圈内间谍

圈内间谍

我正在尝试缩放位于轴环境中的绘图部分。我尝试使用的一个想法可以在这里找到这里但是,当我尝试编译代码时,Latex 报告错误。如果有人可以提供关于如何规避此问题的提示,我将不胜感激?

MWE 如下。

% arara: pdflatex
% arara: clean: {files: [MWE_ScopeAxis.aux, MWE_ScopeAxis.log]}

\documentclass[tikz,border=1mm]{standalone}
\usepackage{amsmath, tikz, pgfplots}
\usetikzlibrary{calc,spy,shapes,positioning}
\pgfplotsset{compat=newest}


\begin{document}
\begin{tikzpicture}[spy/.style={%
draw,red,
line width=1pt,
circle,inner sep=0pt,
},
]

\newcommand*\myplots[1][]{
\addplot[color=blue,dashed]
table[row sep=crcr]{
1.250000000054 0.218471486504557\\1.27500000012472 0.235880794037559\\1.30000000004985 0.253093675278193\\1.32499999988962 0.269996702493353\\1.34999999996296 0.28660169532495\\1.37500000003271 0.302803529131698\\1.4 0.318627316831094\\1.42500000000018 0.333967811176506\\1.44999999975398 0.348915976282584\\1.47499999999985 0.363393665978672\\1.50000000000007 0.377386190083728\\1.52499999999677 0.391065980885588\\1.54999999999987 0.404406696565785\\1.5749999999932 0.417357153126701\\1.60000000000001 0.429890180101467\\1.62500000007965 0.441495914781593\\1.64999999998047 0.453420186117445\\1.67500000000006 0.464885624062778\\1.70000000000013 0.475698022605379\\1.72499999999977 0.486001302461843\\1.75000000007258 0.49588760557761\\1.77500000001522 0.505406921339204\\1.79999999999992 0.514575948858101\\1.8249999999994 0.523580224222934\\1.84999999999966 0.532346980549898\\1.87499999998767 0.540884368439134\\1.90000000002483 0.549236128880721\\1.92499999997271 0.557390601810701\\1.94999999999657 0.565349329095157\\1.97499999999941 0.573100654346336\\1.99999999999993 0.580661122004988\\2.02499999998678 0.588035048696743\\2.0499999999709 0.595221272967935\\2.07499999999558 0.602215073143855\\2.09999999981776 0.609014392276178\\2.12500000001126 0.615634705868222\\2.14999999999957 0.622107376143054\\2.17499999994578 0.628535289209435\\2.19999999832383 0.63479954406909\\2.225 0.640975653060916\\2.24999999999955 0.647023272731091\\2.27499999999981 0.652900079435489\\2.29999999999833 0.658608487562972\\2.32499999999118 0.664162521737991\\2.34999999999773 0.669564611132752\\2.3750000000001 0.674786909878852\\2.40000000000024 0.679871708587361\\2.42499999998267 0.68481930558268\\2.44999999993369 0.689620895991369\\2.475 0.694300387671984\\2.50000000000226 0.698847019454327\\2.52499999999607 0.703231052229968\\2.54999999999282 0.707335949070966\\2.575 0.711299740037372\\2.59999999997469 0.715121564545835\\2.62500000002107 0.719030281788718\\2.64999999998823 0.722750679025289\\2.67499999999833 0.726355404984384\\2.6999999999989 0.729841563597055\\2.72500000000001 0.733213147420525\\2.75000000000046 0.736469697155365\\2.77500000011202 0.739681867953894\\2.8 0.742786117829059\\2.82500000000028 0.745831867778158\\2.84999999999055 0.748760245235199\\2.87499999999654 0.751587709302175\\2.90000000000011 0.754337713416536\\2.92500000001402 0.756957274828441\\2.94999999995396 0.759357524849041\\2.97499999999574 0.761687855897812\\3.00000000000154 0.764338301992918\\};
% \addlegendentry{po:pid};

\addplot [color=green!50!black,dashed]
table[row sep=crcr]{
1.250000000054 0.590067068740046\\1.27500000012472 0.587559925194454\\1.30000000004985 0.586376714983635\\1.32499999988962 0.586069496190726\\1.34999999996296 0.586583764906821\\1.37500000003271 0.587586732327579\\1.4 0.589106686232638\\1.42500000000018 0.590799582313491\\1.44999999975398 0.592894933769734\\1.47499999999985 0.595115212158793\\1.50000000000007 0.597338496940835\\1.52499999999677 0.600163078036215\\1.54999999999987 0.603553183039573\\1.5749999999932 0.607355964366702\\1.60000000000001 0.611472392727962\\1.62500000007965 0.612640770551816\\1.64999999998047 0.618542970092304\\1.67500000000006 0.625478240488116\\1.70000000000013 0.63111283078678\\1.72499999999977 0.635924446858566\\1.75000000007258 0.640430875313834\\1.77500000001522 0.644633876853955\\1.79999999999992 0.647757322657836\\1.8249999999994 0.647552686193448\\1.84999999999966 0.647363620909126\\1.87499999998767 0.647117668558105\\1.90000000002483 0.646013166144435\\1.92499999997271 0.644422071010403\\1.94999999999657 0.642591297950079\\1.97499999999941 0.640866907916906\\1.99999999999993 0.639224831229371\\2.02499999998678 0.636685323281278\\2.0499999999709 0.633964341182746\\2.07499999999558 0.631446791852552\\2.09999999981776 0.628537387562625\\2.12500000001126 0.626107411465097\\2.14999999999957 0.624103000469\\2.17499999994578 0.62449136318196\\2.19999999832383 0.624449479840847\\2.225 0.6256877319412\\2.24999999999955 0.628088304645751\\2.27499999999981 0.630472877532383\\2.29999999999833 0.63283206246448\\2.32499999999118 0.635116015919806\\2.34999999999773 0.637322260692226\\2.3750000000001 0.640065236430338\\2.40000000000024 0.642534886174564\\2.42499999998267 0.644944092104574\\2.44999999993369 0.647313968075354\\2.475 0.649603381645786\\2.50000000000226 0.651905320157395\\2.52499999999607 0.654572686699921\\2.54999999999282 0.658065576936871\\2.575 0.661530686251933\\2.59999999997469 0.664985448106105\\2.62500000002107 0.667216476217143\\2.64999999998823 0.669895462979295\\2.67499999999833 0.672557424400875\\2.6999999999989 0.675234842685167\\2.72500000000001 0.677932291475736\\2.75000000000046 0.680659050710123\\2.77500000011202 0.683201448501821\\2.8 0.685708044714863\\2.82500000000028 0.688088365642656\\2.84999999999055 0.690571448381062\\2.87499999999654 0.693076214461211\\2.90000000000011 0.695575684929241\\2.92500000001402 0.698184293706798\\2.94999999995396 0.701235761040505\\2.97499999999574 0.704202908157281\\3.00000000000154 0.705980592056065\\};
}

\begin{axis}[%
width=6cm,
height=3.5cm,
unbounded coords=jump,
scale only axis,
xmin=1.25,
xmax=2,
ymin=-5,
ymax=20,
ylabel={$y$},
xlabel={$x$},
ytick = {0,5,10,15}
]

\def\spyviewersize{1.25cm}
\def\spyonclipreduce{0.5pt}

\def\spyfactorI{2}
\coordinate (spy-on 1) at (axis cs: 1.5,1);
\coordinate (spy-in 1) at (axis cs: 1.8,10);

\node[spy,minimum size={\spyviewersize/\spyfactorI}] (spy-on node 1) at (spy-on 1) {};
\node[spy,minimum size=\spyviewersize, fill = white] (spy-in node 1) at (spy-in 1) {};

\myplots

\begin{scope}
         \clip (spy-in 1) circle (0.5*\spyviewersize-\spyonclipreduce);
        \pgfmathsetmacro\sI{1/\spyfactorI}
        \begin{scope}[shift={($\sI*(spy-in 1)-\sI*(spy-on 1)$)}]%,scale around={\spyfactorI:(spy-on 1)}]
               \myplots
        \end{scope}
\end{scope}

\end{axis}

\end{tikzpicture}
\end{document}

一个运行良好的示例代表了来自以下代码的稍微修改后的版本这里您也可以在下面找到它。尽管如此,轴环境并未使用,绘图也未通过一组点来定义。

% arara: pdflatex
% arara: clean: {files: [MWE_circle.aux, MWE_circle.bbl, MWE_circle.bcf, MWE_circle.blg, MWE_circle.log, MWE_circle.out, MWE_circle.run.xml, MWE_circle.toc, MWE_circle.ist, MWE_circle.slo, MWE_circle.glo, MWE_circle.synctex.gz]}

\documentclass[tikz,border=1mm]{standalone}

\usetikzlibrary{calc,positioning}

\begin{document}
\begin{tikzpicture}[
    % Style for the spy nodes and the connection line
    spy/.style={%
        draw,red,
        line width=1pt,
        circle,inner sep=0pt,
    },
]
    % Parameters

    %% size of the spy-in nodes
    \def\spyviewersize{1.25cm}

    %% (line width of the spy nodes) / 2
    %% we need this for clipping later
    \def\spyonclipreduce{0.5pt}

    %% first zoom
    %%% factor
    \def\spyfactorI{2}
    %%% spy on point
    \coordinate (spy-on 1) at (2.44,1);% sould be on the curve
    %%% spy in point
    \coordinate (spy-in 1) at (5,1);


    \def\spyfactorII{2}
    %%% spy on point (last spy in point)


    %% the graph/picture
    \def\pic{
        %%% grid
        %\draw [ultra thin,step=0.2,gray] (0,0) grid (6,6);
        %%% graph
        \draw [line width=2pt,green!70!black] (0,0) parabola [bend at start] (6,6);
        \draw [line width=2pt,red!70!black] (2,0) parabola [bend={(2.5,1)}] (3,0);
        %%% axes
        \draw [->] (0,0) -- (6,0) node [right] {$t$};
        \draw [->] (0,0) -- (0,6) node [left] {$x$};
    }


    % draw the original picture
    \pic


    % first zoom
    %% spy on node
    \node[spy,minimum size={\spyviewersize/\spyfactorI}] (spy-on node 1) at (spy-on 1) {};
    %% spy in node
    \node[spy,minimum size=\spyviewersize, fill = white] (spy-in node 1) at (spy-in 1) {};
    \begin{scope}
        \clip (spy-in 1) circle (0.5*\spyviewersize-\spyonclipreduce);
        \pgfmathsetmacro\sI{1/\spyfactorI}
        \begin{scope}[
            shift={($\sI*(spy-in 1)-\sI*(spy-on 1)$)},
            scale around={\spyfactorI:(spy-on 1)}
        ]
           \pic
        \end{scope}
    \end{scope}

    %% connect the nodes
    \draw [spy] (spy-on node 1) -- (spy-in node 1);

%    % print the factors
%    \node [above=0pt of spy-in node 1] {$\spyfactorI\times$};
%    \pgfmathsetmacro\spyfactor{\spyfactorI*\spyfactorII}

\end{tikzpicture}
\end{document}

除此之外,是否可以仅裁剪图的“放大”部分并将其导出为单独的 .pdf?

谢谢!

答案1

以下是一些带有圆形节点的代码。它基于杰克的回答如果它不能解决您的所有问题,它可能仍然是比在评论中发布代码片段更好的讨论基础。

\documentclass[tikz,border=1mm]{standalone}
\usepackage{amsmath}
\usepackage{pgfplots}
\usetikzlibrary{calc,positioning}
\pgfplotsset{compat=1.17}


\begin{document}
\begin{tikzpicture}[cspy/.style={%
draw,red,
line width=1pt,
circle,inner sep=0pt,
},]
\begin{axis}[%
width=6cm,
height=3.5cm,
unbounded coords=jump,
scale only axis,
xmax=2,
ymin=-5,
ymax=20,
ylabel={$y$},
xlabel={$x$},
ytick = {0,5,10,15}
]
\newcommand*\myplots[1][]{
\addplot [
color=blue,
dashed
]
table[row sep=crcr]{
1.250000000054 0.218471486504557\\1.27500000012472 0.235880794037559\\1.30000000004985 0.253093675278193\\1.32499999988962 0.269996702493353\\1.34999999996296 0.28660169532495\\1.37500000003271 0.302803529131698\\1.4 0.318627316831094\\1.42500000000018 0.333967811176506\\1.44999999975398 0.348915976282584\\1.47499999999985 0.363393665978672\\1.50000000000007 0.377386190083728\\1.52499999999677 0.391065980885588\\1.54999999999987 0.404406696565785\\1.5749999999932 0.417357153126701\\1.60000000000001 0.429890180101467\\1.62500000007965 0.441495914781593\\1.64999999998047 0.453420186117445\\1.67500000000006 0.464885624062778\\1.70000000000013 0.475698022605379\\1.72499999999977 0.486001302461843\\1.75000000007258 0.49588760557761\\1.77500000001522 0.505406921339204\\1.79999999999992 0.514575948858101\\1.8249999999994 0.523580224222934\\1.84999999999966 0.532346980549898\\1.87499999998767 0.540884368439134\\1.90000000002483 0.549236128880721\\1.92499999997271 0.557390601810701\\1.94999999999657 0.565349329095157\\1.97499999999941 0.573100654346336\\1.99999999999993 0.580661122004988\\2.02499999998678 0.588035048696743\\2.0499999999709 0.595221272967935\\2.07499999999558 0.602215073143855\\2.09999999981776 0.609014392276178\\2.12500000001126 0.615634705868222\\2.14999999999957 0.622107376143054\\2.17499999994578 0.628535289209435\\2.19999999832383 0.63479954406909\\2.225 0.640975653060916\\2.24999999999955 0.647023272731091\\2.27499999999981 0.652900079435489\\2.29999999999833 0.658608487562972\\2.32499999999118 0.664162521737991\\2.34999999999773 0.669564611132752\\2.3750000000001 0.674786909878852\\2.40000000000024 0.679871708587361\\2.42499999998267 0.68481930558268\\2.44999999993369 0.689620895991369\\2.475 0.694300387671984\\2.50000000000226 0.698847019454327\\2.52499999999607 0.703231052229968\\2.54999999999282 0.707335949070966\\2.575 0.711299740037372\\2.59999999997469 0.715121564545835\\2.62500000002107 0.719030281788718\\2.64999999998823 0.722750679025289\\2.67499999999833 0.726355404984384\\2.6999999999989 0.729841563597055\\2.72500000000001 0.733213147420525\\2.75000000000046 0.736469697155365\\2.77500000011202 0.739681867953894\\2.8 0.742786117829059\\2.82500000000028 0.745831867778158\\2.84999999999055 0.748760245235199\\2.87499999999654 0.751587709302175\\2.90000000000011 0.754337713416536\\2.92500000001402 0.756957274828441\\2.94999999995396 0.759357524849041\\2.97499999999574 0.761687855897812\\3.00000000000154 0.764338301992918\\};
% \addlegendentry{po:pid};

\addplot [
color=green!50!black,
dashed
]
table[row sep=crcr]{
1.250000000054 0.590067068740046\\1.27500000012472 0.587559925194454\\1.30000000004985 0.586376714983635\\1.32499999988962 0.586069496190726\\1.34999999996296 0.586583764906821\\1.37500000003271 0.587586732327579\\1.4 0.589106686232638\\1.42500000000018 0.590799582313491\\1.44999999975398 0.592894933769734\\1.47499999999985 0.595115212158793\\1.50000000000007 0.597338496940835\\1.52499999999677 0.600163078036215\\1.54999999999987 0.603553183039573\\1.5749999999932 0.607355964366702\\1.60000000000001 0.611472392727962\\1.62500000007965 0.612640770551816\\1.64999999998047 0.618542970092304\\1.67500000000006 0.625478240488116\\1.70000000000013 0.63111283078678\\1.72499999999977 0.635924446858566\\1.75000000007258 0.640430875313834\\1.77500000001522 0.644633876853955\\1.79999999999992 0.647757322657836\\1.8249999999994 0.647552686193448\\1.84999999999966 0.647363620909126\\1.87499999998767 0.647117668558105\\1.90000000002483 0.646013166144435\\1.92499999997271 0.644422071010403\\1.94999999999657 0.642591297950079\\1.97499999999941 0.640866907916906\\1.99999999999993 0.639224831229371\\2.02499999998678 0.636685323281278\\2.0499999999709 0.633964341182746\\2.07499999999558 0.631446791852552\\2.09999999981776 0.628537387562625\\2.12500000001126 0.626107411465097\\2.14999999999957 0.624103000469\\2.17499999994578 0.62449136318196\\2.19999999832383 0.624449479840847\\2.225 0.6256877319412\\2.24999999999955 0.628088304645751\\2.27499999999981 0.630472877532383\\2.29999999999833 0.63283206246448\\2.32499999999118 0.635116015919806\\2.34999999999773 0.637322260692226\\2.3750000000001 0.640065236430338\\2.40000000000024 0.642534886174564\\2.42499999998267 0.644944092104574\\2.44999999993369 0.647313968075354\\2.475 0.649603381645786\\2.50000000000226 0.651905320157395\\2.52499999999607 0.654572686699921\\2.54999999999282 0.658065576936871\\2.575 0.661530686251933\\2.59999999997469 0.664985448106105\\2.62500000002107 0.667216476217143\\2.64999999998823 0.669895462979295\\2.67499999999833 0.672557424400875\\2.6999999999989 0.675234842685167\\2.72500000000001 0.677932291475736\\2.75000000000046 0.680659050710123\\2.77500000011202 0.683201448501821\\2.8 0.685708044714863\\2.82500000000028 0.688088365642656\\2.84999999999055 0.690571448381062\\2.87499999999654 0.693076214461211\\2.90000000000011 0.695575684929241\\2.92500000001402 0.698184293706798\\2.94999999995396 0.701235761040505\\2.97499999999574 0.704202908157281\\3.00000000000154 0.705980592056065\\};
}
% work with explicit rather symbolic coordinates because of
% pgfplots' surveying
\newcommand*\spypoint{1.4,0.5}
\newcommand*\spyviewer{1.6,10}
\newcommand*\spyfactorI{2}
\newcommand*\spyviewersize{1.25cm}
\newcommand*\spyonclipreduce{0.5pt}

\myplots

\node[cspy,minimum size={\spyviewersize/\spyfactorI}] 
    (spy-on node 1) at (\spypoint) {};
\node[cspy,minimum size=\spyviewersize, fill = white] 
    (spy-in node 1) at (\spyviewer) {};

\draw (spy-on node 1) edge (spy-in node 1);
\begin{scope}
    \clip (\spyviewer) circle[radius=0.5*\spyviewersize-\spyonclipreduce];
    \pgfmathparse{\spyfactorI^2/(\spyfactorI-1)}
    \begin{scope}[scale around={\spyfactorI:($(\spyviewer)!\spyfactorI^2/(\spyfactorI^2-1)!(\spypoint)$)}]
        \myplots
    \end{scope}
\end{scope}
\end{axis}
\end{tikzpicture}%
\end{document}

在此处输入图片描述

答案2

在我“玩”了上面的脚本之后,我发现它并没有真正实现我想要的功能。

如果您考虑下面的示例,可以看到图的“放大”部分包含 5 条线,而“放大”部分仅包含 3 条线。基本上,我希望将较小圆圈的内容放大“spyfactorI”倍并显示在同一图上。

另一个问题涉及代码部分

{\spyfactorI:($(\spyviewer)!\spyfactorI^2/(\spyfactorI^2-1)!(\spypoint)$)}]

在哪里可以找到有关如何阅读此语法的更多信息?

谢谢你!

  \documentclass[tikz,border=1mm]{standalone}
    \usepackage{amsmath}
    \usepackage{pgfplots}
    \usetikzlibrary{calc,positioning}

    \pgfplotsset{
    every axis/.append style={
        xticklabel style = {font=\tiny,/pgf/number format/fixed,/pgf/number format/precision=5},
        yticklabel style = {font=\tiny,/pgf/number format/fixed,/pgf/number format/precision=5},
        zticklabel style = {font=\tiny,/pgf/number format/fixed,/pgf/number format/precision=5},
        xlabel style = {font=\tiny},
        y label style={font=\tiny, at={(-.15,.5)},rotate=0,anchor=south, align = center},
        zlabel style = {font=\tiny},
        legend style = {font=\tiny},
        legend style ={at={(.99,0.04)}, anchor=south east, legend cell align=left, align=left, draw=white!15!black, column sep = 0.25pt, row sep = 0pt, legend image post style={xscale=.5}, font = \tiny}
      },
      every axis plot/.append style={line width=0.5pt,line cap=round},
      compat=newest,
    }

    \definecolor{mycolor1}{rgb}{0.10588,0.61961,0.46667}%
    \definecolor{mycolor2}{rgb}{0.85098,0.37255,0.00784}%


    \begin{document}

    \begin{tikzpicture}[cspy/.style={%
    draw,red,
    line width=1pt,
    circle,inner sep=0pt,
    },]
    \begin{axis}[%
    width=6cm,
    height=3.5cm,
    unbounded coords=jump,
    scale only axis,
    xmin = 0.3,
    xmax=0.6,
    ymin=-2900,
    ymax=2900,
    ylabel={$y$},
    xlabel={$x$},
    ]
    \newcommand*\myplots[1][]{
    \addplot [color=mycolor1,  join = round]
    table[row sep=crcr]{%
    0   0\\
    0.349370002746582   0\\
    0.349860012531281   -1254.50256347656\\
    0.355250000953674   2693.71899414063\\
    0.356229990720749   2534.44995117188\\
    0.358680009841919   798.401306152344\\
    0.363580018281937   -2693.638671875\\
    0.364560008049011   -2535.59692382813\\
    0.367009997367859   -801.633911132813\\
    0.371910005807877   2693.55395507813\\
    0.372889995574951   2536.74047851563\\
    0.375340014696121   804.866027832031\\
    0.380239993333817   -2693.46533203125\\
    0.381220012903214   -2537.8798828125\\
    0.383670002222061   -808.097229003906\\
    0.388570010662079   2693.3720703125\\
    0.389550000429153   2539.015625\\
    0.392000019550323   811.327087402344\\
    0.396899998188019   -2693.2744140625\\
    0.397880017757416   -2540.14672851563\\
    0.400330007076263   -814.553894042969\\
    0.405230015516281   2693.17309570313\\
    0.406210005283356   2541.27416992188\\
    0.408659994602203   817.780822753906\\
    0.413560003042221   -2693.06689453125\\
    0.414539992809296   -2542.3974609375\\
    0.416990011930466   -821.007385253906\\
    0.421889990568161   2692.95678710938\\
    0.422870010137558   2543.51684570313\\
    0.425319999456406   824.232543945313\\
    0.430220007896423   -2692.8427734375\\
    0.431199997663498   -2544.63256835938\\
    0.433650016784668   -827.45556640625\\
    0.438549995422363   2692.7236328125\\
    0.43953001499176    2545.7431640625\\
    0.441980004310608   830.676391601563\\
    0.446880012750626   -2692.60083007813\\
    0.4478600025177 -2546.8505859375\\
    0.450309991836548   -833.895935058594\\
    0.455210000276566   2692.4736328125\\
    0.456190019845963   2547.95336914063\\
    0.45864000916481    837.114624023438\\
    0.463540017604828   -2692.34228515625\\
    0.464520007371902   -2549.052734375\\
    0.46696999669075    -840.332763671875\\
    0.471870005130768   2692.20678710938\\
    0.472849994897842   2550.14819335938\\
    0.475300014019012   843.5498046875\\
    0.480199992656708   -2692.06689453125\\
    0.481180012226105   -2551.2392578125\\
    0.483630001544952   -846.764282226563\\
    0.48853000998497    2691.92260742188\\
    0.489509999752045   2552.326171875\\
    0.491960018873215   849.977966308594\\
    0.49685999751091    -2691.77416992188\\
    0.497840017080307   -2553.40942382813\\
    0.500289976596832   -853.190795898438\\
    0.505190014839172   2691.62158203125\\
    0.506170034408569   2554.48876953125\\
    0.508620023727417   856.402099609375\\
    0.513520002365112   -2691.46459960938\\
    0.514500021934509   -2555.56396484375\\
    0.516950011253357   -859.6123046875\\
    0.521849989891052   2691.30322265625\\
    0.522339999675751   2669.38427734375\\
    0.523810029029846   2076.95092773438\\
    0.530179977416992   -2691.13793945313\\
    0.530669987201691   -2669.8427734375\\
    0.532140016555786   -2079.1064453125\\
    0.538510024547577   2690.96850585938\\
    0.539000034332275   2670.29663085938\\
    0.540470004081726   2081.25732421875\\
    0.546840012073517   -2690.79443359375\\
    0.547330021858215   -2670.74682617188\\
    0.548799991607666   -2083.40600585938\\
    0.555169999599457   2690.6162109375\\
    0.555660009384155   2671.19311523438\\
    0.557129979133606   2085.55200195313\\
    0.563499987125397   -2690.43383789063\\
    0.563989996910095   -2671.634765625\\
    0.565460026264191   -2087.69409179688\\
    0.571830034255981   2690.2470703125\\
    0.572319984436035   2672.07202148438\\
    0.573790013790131   2089.83325195313\\
    0.580160021781921   -2690.05615234375\\
    0.58065003156662    -2672.50537109375\\
    0.582120001316071   -2091.96826171875\\
    0.588490009307861   2689.86083984375\\
    0.58898001909256    2672.93432617188\\
    0.590449988842011   2094.10107421875\\
    0.596819996833801   -2689.66162109375\\
    0.5973100066185 -2673.35913085938\\
    0.598780035972595   -2096.23095703125\\
    0.605149984359741   2689.45776367188\\
    0.60563999414444    2673.78002929688\\
    0.607110023498535   2098.35620117188\\
    0.613480031490326   -2689.25\\
    0.61396998167038    -2674.1962890625\\
    0.615440011024475   -2100.47827148438\\
    0.621810019016266   2689.03784179688\\
    0.622300028800964   2674.6083984375\\
    };
    \addplot [color=mycolor2,  join = round]
      table[row sep=crcr]{%
    0   0\\
    0.349370002746582   0\\
    0.349860012531281   2692.3583984375\\
    0.351330012083054   2233.69555664063\\
    0.35819000005722    -2692.48950195313\\
    0.359659999608994   -2235.58764648438\\
    0.366520017385483   2692.61572265625\\
    0.367500007152557   2475.15014648438\\
    0.370440006256104   151.363052368164\\
    0.374850004911423   -2692.73828125\\
    0.375829994678497   -2476.486328125\\
    0.378769993782043   -154.744110107422\\
    0.383179992437363   2692.8564453125\\
    0.38416001200676    2477.81884765625\\
    0.387100011110306   158.12467956543\\
    0.391510009765625   -2692.970703125\\
    0.3924899995327 -2479.14721679688\\
    0.395429998636246   -161.504196166992\\
    0.399839997291565   2693.080078125\\
    0.400820016860962   2480.47094726563\\
    0.403760015964508   164.883895874023\\
    0.408170014619827   -2693.185546875\\
    0.409150004386902   -2481.79125976563\\
    0.412090003490448   -168.26318359375\\
    0.416500002145767   2693.28662109375\\
    0.417479991912842   2483.10815429688\\
    0.420419991016388   171.643829345703\\
    0.42483001947403    -2693.38354492188\\
    0.425810009241104   -2484.42114257813\\
    0.42875000834465    -175.022644042969\\
    0.433160006999969   2693.47607421875\\
    0.434139996767044   2485.7294921875\\
    0.43707999587059    178.400238037109\\
    0.441489994525909   -2693.564453125\\
    0.442470014095306   -2487.0341796875\\
    0.445410013198853   -181.779281616211\\
    0.449820011854172   2693.64868164063\\
    0.450800001621246   2488.33447265625\\
    0.453740000724792   185.156402587891\\
    0.458149999380112   -2693.72827148438\\
    0.459130018949509   -2489.63110351563\\
    0.462070018053055   -188.533767700195\\
    0.466480016708374   2693.80419921875\\
    0.467460006475449   2490.92431640625\\
    0.470400005578995   191.912094116211\\
    0.474810004234314   -2693.87524414063\\
    0.475789994001389   -2492.21362304688\\
    0.478729993104935   -195.289855957031\\
    0.483139991760254   2693.9423828125\\
    0.484120011329651   2493.49853515625\\
    0.487060010433197   198.665115356445\\
    0.491470009088516   -2694.00537109375\\
    0.492449998855591   -2494.77954101563\\
    0.495389997959137   -202.042236328125\\
    0.499799996614456   2694.06372070313\\
    0.500779986381531   2496.056640625\\
    0.503719985485077   205.41960144043\\
    0.508130013942719   -2694.11840820313\\
    0.509110033512115   -2497.32983398438\\
    0.512050032615662   -208.796646118164\\
    0.516460001468658   2694.16845703125\\
    0.517440021038055   2498.59936523438\\
    0.520380020141602   212.171112060547\\
    0.524789988994598   -2694.21411132813\\
    0.525770008563995   -2499.86450195313\\
    0.528710007667542   -215.545822143555\\
    0.533120036125183   2694.255859375\\
    0.534099996089935   2501.12573242188\\
    0.537039995193481   218.919891357422\\
    0.541450023651123   -2694.29296875\\
    0.542429983615875   -2502.3828125\\
    0.544880032539368   -711.730346679688\\
    0.549780011177063   2694.32641601563\\
    0.55076003074646    2503.63647460938\\
    0.553210020065308   714.996032714844\\
    0.558109998703003   -2694.35522460938\\
    0.5590900182724 -2504.88598632813\\
    0.561540007591248   -718.260620117188\\
    0.566439986228943   2694.3798828125\\
    0.56742000579834    2506.1318359375\\
    0.569869995117188   721.523376464844\\
    0.574770033359528   -2694.39990234375\\
    0.57574999332428    -2507.37280273438\\
    0.578199982643127   -724.783813476563\\
    0.583100020885468   2694.416015625\\
    0.58407998085022    2508.6103515625\\
    0.586530029773712   728.045227050781\\
    0.591430008411407   -2694.42797851563\\
    0.592410027980804   -2509.84423828125\\
    0.594860017299652   -731.305908203125\\
    0.599759995937347   2694.43530273438\\
    0.600740015506744   2511.07446289063\\
    0.603190004825592   734.564208984375\\
    0.608089983463287   -2694.43872070313\\
    0.609070003032684   -2512.30053710938\\
    0.611519992351532   -737.820556640625\\
    0.616420030593872   2694.43774414063\\
    0.617399990558624   2513.52172851563\\
    0.619849979877472   741.076904296875\\
    0.624750018119812   -2694.4326171875\\
    0.625729978084564   -2514.7392578125\\
    };
    }

    % work with explicit rather symbolic coordinates because of
    % pgfplots' surveying
    \newcommand*\spypoint{0.4,0}
    \newcommand*\spyviewer{0.55,0}
    \newcommand*\spyfactorI{2}
    \newcommand*\spyviewersize{1cm}
    \newcommand*\spyonclipreduce{0.5pt}

    \myplots

    \node[cspy,minimum size={\spyviewersize/\spyfactorI}] 
        (spy-on node 1) at (\spypoint) {};
    \node[cspy,minimum size=\spyviewersize, fill = white] 
       (spy-in node 1) at (\spyviewer) {};

    %\draw (spy-on node 1) edge (spy-in node 1);
    \begin{scope}
        \clip (\spyviewer) circle[radius=0.5*\spyviewersize-\spyonclipreduce];
        \pgfmathparse{\spyfactorI^2/(\spyfactorI-1)}
        \begin{scope}[scale around={\spyfactorI:($(\spyviewer)!\spyfactorI^2/(\spyfactorI^2-1)!(\spypoint)$)}]
            \myplots
        \end{scope}
    \end{scope}
    \end{axis}
    \end{tikzpicture}%

    \end{document}

在此处输入图片描述

相关内容