这个问题与许多其他问题类似(实际上我使用的代码来自上一个问题的答案:如何写出完美的方程参数描述?)
评论区变得太长了,我觉得开一个不同的帖子会更容易(给您带来不便,敬请谅解)
我当前的代码如下:
\usepackage{array,tabularx,calc}
\newlength{\conditionwd}
\newenvironment{conditions}[1][where:]
{%
#1\tabularx{\textwidth-\widthof{#1}}[t]{
>{$}l<{$} @{${}={}$} X@{}
}%
}
{\endtabularx\\[\belowdisplayskip]}
\begin{document}
\citet{hernandez1992probabilistic} further refines the PROLAM model and uses a virtual work calculation (see equation \ref{eqn:PROLAM deflection} to calculate the deflection ($\Delta$) which can be used in standard elastic deflection MOE calculations \ref{eqn:MOE4pt}.
\begin{equation}
\Delta = \displaystyle\sum_{i=1}^{n} \left[\left(\frac{M_x m_x}{E_c I_i}+\frac{kV_xv_x}{A_iG_i}\right) \times \Delta_x \right]
\label{eqn:PROLAM deflection}
\end{equation}
\begin{conditions}
$\Delta$ & The total glulam beam deflection at $x$,\\
$M_x$ & The bending moment at $x$ caused by actual loading,\\
$m_x$ & The bending moment at $x$ caused by a unit load at the midspan of the beam,\\
$V_x$ & The shear at $x$ caused by actual loading,\\
$v_x$ & The shear at $x$ caused by a unit load at the midspan of the beam,\\
$k$ & A form factor (1.2 for rectangular section),\\
$E_c$ & A constant MOE value used in the transformed cross section,\\
$I_i$ & The moment of inertia of the ith transformed cross section at x,\\
$A_i$ & The transformed area at the ith transformed cross section at x,\\
$G_i$ & The shear modulus of the ith transformed cross section at x,\\
$\Delta_x$ & The increment at which calculations are performed,\\
$n$ & The total number of increments along the beam length.\\
\end{conditions}
\end{document}
生成结果:
如您所见,参数描述产生了一个溢出框。有人知道这是为什么吗?这可能与我的其他一个有关吗\packages
?
答案1
你应该不是\end{equation}
在和之间留一个空行\begin{conditions}
,否则描述可能会与等式分离。
\begin{equation}
在任何情况下,前面都不应该有空行。
另一方面,如此长的变量描述很可能会产生糟糕的分页符,无论它是否脱离方程式。
对于这种情况,简单的列表环境可能更好:等号不是必需的,可以用动词代替是。
这是您的代码的修复版本;我做了几个小修复,您可以将它们与您的版本进行比较。在=
没有大写字母之后:它们很重,与逗号不相配;ith
应该是$i$th
和at x
应该总是是at $x$
(甚至更好,at~$x$
)。以 结尾\endtabularx\\[\baselineskip]
会产生警告。
\usepackage{array,tabularx,calc}
\newlength{\conditionwd}
\newenvironment{conditions}[1][where:]
{%
#1\tabularx{\textwidth-\widthof{#1}}[t]{
>{$}l<{$} @{${}={}$} X@{}
}%
}
{\endtabularx\\[\belowdisplayskip]}
\begin{document}
\citet{hernandez1992probabilistic} further refines the PROLAM model and uses a virtual work calculation (see equation \ref{eqn:PROLAM deflection} to calculate the deflection ($\Delta$) which can be used in standard elastic deflection MOE calculations \ref{eqn:MOE4pt}.
\begin{equation}
\Delta = \displaystyle\sum_{i=1}^{n} \left[\left(\frac{M_x m_x}{E_c I_i}+\frac{kV_xv_x}{A_iG_i}\right) \times \Delta_x \right]
\label{eqn:PROLAM deflection}
\end{equation}
\begin{conditions}
$\Delta$ & The total glulam beam deflection at $x$,\\
$M_x$ & The bending moment at $x$ caused by actual loading,\\
$m_x$ & The bending moment at $x$ caused by a unit load at the midspan of the beam,\\
$V_x$ & The shear at $x$ caused by actual loading,\\
$v_x$ & The shear at $x$ caused by a unit load at the midspan of the beam,\\
$k$ & A form factor (1.2 for rectangular section),\\
$E_c$ & A constant MOE value used in the transformed cross section,\\
$I_i$ & The moment of inertia of the ith transformed cross section at x,\\
$A_i$ & The transformed area at the ith transformed cross section at x,\\
$G_i$ & The shear modulus of the ith transformed cross section at x,\\
$\Delta_x$ & The increment at which calculations are performed,\\
$n$ & The total number of increments along the beam length.\\
\end{conditions}
\end{document}
这里有一份清单。
\documentclass{article}
\usepackage{array,tabularx,calc}
\usepackage{natbib}
\usepackage{enumitem}
\newlength{\conditionwd}
\newenvironment{conditions}[1][where:]
{%
#1\tabularx{\textwidth-\widthof{#1}}[t]{
>{$}l<{$} @{${}={}$} X@{}%>{\raggedright\arraybackslash}X@{}
}%
}
{\endtabularx\par\addvspace{\belowdisplayskip}}
\begin{document}
\citet{hernandez1992probabilistic} further refines the PROLAM model and uses
a virtual work calculation (see equation~\ref{eqn:PROLAM deflection}) to calculate
the deflection ($\Delta$) which can be used in standard elastic deflection MOE
calculations~\ref{eqn:MOE4pt}
\begin{equation}
\Delta = \sum_{i=1}^{n} \left[
\left(\frac{M_x m_x}{E_c I_i}+\frac{kV_xv_x}{A_iG_i}\right) \times \Delta_x
\right]
\label{eqn:PROLAM deflection}
\end{equation}
where
\begin{itemize}[labelindent=0pt,leftmargin=*,widest=$M_x$,align=left,itemsep=0pt]
\item[$\Delta$] is the total glulam beam deflection at $x$,
\item[$M_x$] is the bending moment at $x$ caused by actual loading,
\item[$m_x$] is the bending moment at $x$ caused by a unit load at the midspan of the beam,
\item[$V_x$] is the shear at $x$ caused by actual loading,
\item[$v_x$] is the shear at $x$ caused by a unit load at the midspan of the beam,
\item[$k$] is a form factor ($1.2$ for rectangular section),
\item[$E_c$] is a constant MOE value used in the transformed cross section,
\item[$I_i$] is the moment of inertia of the $i$th transformed cross section at $x$,
\item[$A_i$] is the transformed area at the $i$th transformed cross section at $x$,
\item[$G_i$] is the shear modulus of the $i$th transformed cross section at $x$,
\item[$\Delta_x$] is the increment at which calculations are performed,
\item[$n$] is the total number of increments along the beam length.
\end{itemize}
\end{document}
答案2
环境开始的那一行有一个缩进conditions
。在您的示例中,conditions
环境定义为
\newenvironment{conditions}[1][where:]
{%
#1\tabularx{\textwidth-\widthof{#1}}[t]{
>{$}l<{$} @{${}={}$} X@{}
}%
}
{\endtabularx\\[\belowdisplayskip]}
因此,当conditions
使用其可选参数的默认值调用环境时where:
,将写入“where:”,并tabularx
开始一个环境。它的宽度tabularx
定义为\textwidth
减去“where:”的宽度。因此,行首的缩进不计入 : 的宽度,正如您在图片上看到的那样,参数描述中的额外宽度与缩进的长度相匹配。因此,只需在环境之前tabularx
添加即可解决间距问题。\noindent
conditions
此外,tabularx
调用的环境conditions
已经将第一列置于数学模式,因此您不应手动放置中间每个单元格的内容$
。