在 along align 环境内对齐一组多行方程

在 along align 环境内对齐一组多行方程

我试图让 3 个很长的等式(我已将其拆分)以某种方式更优雅地与它们各自的等号对齐。缩短这 3 个等式的 LHS(也许将其拆分 3 次?)也有助于将完整的推导更对齐到页面的中心。我尊重其他人对“更优雅”的品味。

在此处输入图片描述

我尝试了这里讨论的方法以及附加的问题,但无济于事对齐环境中的一个多线方程和多个单线方程

\begin{align} 
0&= 0+0+0 \\ \notag
0 &=   R_{\mu\nu}{}^a e_{\rho a} + R_{\rho\mu}{}^a e_{\nu a} -R_{\nu\rho}{}^a e_{\mu a} \\ \notag
R_{\nu\rho}{}^a e_{\mu a} &=   R_{\mu\nu}{}^a e_{\rho a} + R_{\rho\mu}{}^a e_{\nu a}  \\ \notag
(\partial_{[\nu} e_{\rho]}{}^a - \omega_{[\nu}{}^{ab} e_{\rho]}{}_b) e_{\mu a} &=   (\partial_{[\mu} e_{\nu]}{}^a - \omega_{[\mu}{}^{ab} e_{\nu]}{}_b) e_{\rho a} + (\partial_{[\rho} e_{\mu]}{}^a - \omega_{[\rho}{}^{ab} e_{\mu]}{}_b) e_{\nu a}  \\ \notag
\partial_{[\nu} e_{\rho]}{}^a e_{\mu a} - \omega_{[\nu}{}^{ab} e_{\rho]}{}_b e_{\mu a}&=   \partial_{[\mu} e_{\nu]}{}^a e_{\rho a} - \omega_{[\mu}{}^{ab} e_{\nu]}{}_b e_{\rho a} + \partial_{[\rho} e_{\mu]}{}^a e_{\nu a} - \omega_{[\rho}{}^{ab} e_{\mu]}{}_b e_{\nu a}   \\ \notag
\omega_{[\mu}{}^{ab} e_{\nu]}{}{}_b e_{\rho a} + \omega_{[\rho}{}^{ab} e_{\mu]}{}_b e_{\nu a} - \omega_{[\nu}{}^{ab} e_{\rho]}{}_b e_{\mu a} &=   \partial_{[\mu} e_{\nu]}{}^a e_{\rho a}  + \partial_{[\rho} e_{\mu]}{}^a e_{\nu a} - \partial_{[\nu} e_{\rho]}{}^a e_{\mu a} \\ \notag 
\frac{1}{2}\omega_{\mu}{}^{ab} e_{\nu}{}{}_b e_{\rho a} - \frac{1}{2}\omega_{\nu}{}^{ab} e_{\mu}{}{}_b e_{\rho a}  +\frac{1}{2} \omega_{\rho}{}^{ab} e_{\mu}{}_b e_{\nu a} \\ \notag -\frac{1}{2}\omega_{\mu}{}^{ab} e_{\rho}{}_b e_{\nu a}- \frac{1}{2}\omega_{\nu}{}^{ab} e_{\rho}{}_b e_{\mu a} +\frac{1}{2}\omega_{\rho}{}^{ab} e_{\nu}{}_b e_{\mu a}&=   \partial_{[\mu} e_{\nu]}{}^a e_{\rho a}  + \partial_{[\rho} e_{\mu]}{}^a e_{\nu a} - \partial_{[\nu} e_{\rho]}{}^a e_{\mu a} 
\\ \notag 
\bigg(\frac{1}{2}\omega_{\mu}{}^{ab} e_{\nu}{}{}_b e_{\rho a} -\frac{1}{2}\omega_{\mu}{}^{ba} e_{\rho}{}_a e_{\nu b}\bigg) + \bigg( \frac{1}{2}\omega_{\rho}{}^{ab} e_{\nu}{}_b e_{\mu a} \\ \notag + \frac{1}{2} \omega_{\rho}{}^{ba} e_{\mu}{}_a e_{\nu b}\bigg)+ \bigg(-\frac{1}{2}\omega_{\nu}{}^{ab} e_{\mu}{}{}_b e_{\rho a}  - \frac{1}{2}\omega_{\nu}{}^{ba} e_{\rho}{}_a e_{\mu b}\bigg) &=   \partial_{[\mu} e_{\nu]}{}^a e_{\rho a}  + \partial_{[\rho} e_{\mu]}{}^a e_{\nu a} - \partial_{[\nu} e_{\rho]}{}^a e_{\mu a} 
\\ \notag 
\bigg(\frac{1}{2}\omega_{\mu}{}^{ab} e_{\nu}{}{}_b e_{\rho a} +\frac{1}{2}\omega_{\mu}{}^{ab} e_{\rho}{}_a e_{\nu b}\bigg) + \bigg( \frac{1}{2}\omega_{\rho}{}^{ab} e_{\nu}{}_b e_{\mu a} \\ \notag - \frac{1}{2} \omega_{\rho}{}^{ab} e_{\mu}{}_a e_{\nu b}\bigg)+ \bigg(-\frac{1}{2}\omega_{\nu}{}^{ab} e_{\mu}{}{}_b e_{\rho a}  + \frac{1}{2}\omega_{\nu}{}^{ab} e_{\rho}{}_a e_{\mu b}\bigg) &=   \partial_{[\mu} e_{\nu]}{}^a e_{\rho a}  + \partial_{[\rho} e_{\mu]}{}^a e_{\nu a} - \partial_{[\nu} e_{\rho]}{}^a e_{\mu a} 
\\ \notag 
\omega_{\mu}{}^{ab} e_{\nu}{}{}_b e_{\rho a}  + 0 + 0 &=   \partial_{[\mu} e_{\nu]}{}^a e_{\rho a}  + \partial_{[\rho} e_{\mu]}{}^c e_{\nu c} - \partial_{[\nu} e_{\rho]}{}^c e_{\mu c} 
\\ \notag 
\omega_{\mu}{}^{ab} e_{\nu}{}{}_b e_{\rho a} e^{\rho a} e^{\nu b}&=   \partial_{[\mu} e_{\nu]}{}^a e_{\rho a}e^{\rho a} e^{\nu b}  + \partial_{[\rho} e_{\mu]}{}^c e_{\nu c}e^{\rho a} e^{\nu b} - \partial_{[\nu} e_{\rho]}{}^c e_{\mu c} e^{\rho a} e^{\nu b}
\\ \notag 
\omega_{\mu}{}^{ab} &=   \partial_{[\mu} e_{\nu]}{}^a  e^{\nu b}  + \partial_{[\rho} e_{\mu]}{}^c \delta_c^b e^{\rho a} - \partial_{[\nu} e_{\rho]}{}^c e_{\mu c} e^{\rho a} e^{\nu b}
\\ \notag 
\omega_{\mu}{}^{ab} &=   \partial_{[\mu} e_{\nu]}{}^a  e^{\nu b}  + \partial_{[\rho} e_{\mu]}{}^b e^{\rho a} - \partial_{[\nu} e_{\rho]}{}^c e_{\mu c} e^{\rho a} e^{\nu b}
\\ \notag 
\omega_{\mu}{}^{ab} &=   e^{\nu b}\partial_{[\mu} e_{\nu]}{}^a    + e^{\nu a}\partial_{[\nu} e_{\mu]}{}^b  -e^{\rho a} e^{\lambda b} e_{\mu c} \partial_{[\lambda} e_{\rho]}{}^c
\\ \notag 
\omega_{\mu}{}^{ab} &=   2 e^{\nu [b}\partial_{[\mu} e_{\nu]}{}^{a]}    +e^{\rho a} e^{\lambda b} e_{\mu c} \partial_{[\rho} e_{\lambda]}{}^c
\\ \notag 
\omega_{\mu}{}^{ab} &=   -2 e^{\nu [a}\partial_{[\mu} e_{\nu]}{}^{b]}    + e^{\rho a} e^{\lambda b} e_{\mu c} \partial_{[\rho} e_{\lambda]}{}^c
\end{align}

我的第一反应是使用对齐,但我不知道如何实现这一点

有人能帮忙使我上面代码中的 3 个多行(如果不是很长)等式更漂亮吗?

答案1

一些建议:

  • 省略所有\bigg大小指令并省略相关的左括号和右括号。

  • 将三个长方程的左边部分分成三部分而不是两部分,然后使用\qquad\quad指令将第一行和第二行“推”到左边,形成略微交错的外观。

  • 始终使用\tfrac{1}{2}而不是\frac{1}{2}

  • 在三个三行方程式的组前后添加一些空格。

  • 不要在任何给定行上放置大量材料(例如较长的数学表达式)。这样,错误消息中给出的行信息将有助于加快调试过程,因为任何给定行上可能出错的内容较少。

在此处输入图片描述

\documentclass{article}
\usepackage[margin=2.5cm]{geometry} % set page size parameters suitably
\usepackage{amsmath}
\allowdisplaybreaks
\begin{document} 
\begin{align*} 
0 &= 0+0+0 \refstepcounter{equation} \tag{\theequation}
\\
0 &= R_{\mu\nu}{}^a  e_{\rho a} + 
     R_{\rho\mu}{}^a e_{\nu a} -
     R_{\nu\rho}{}^a e_{\mu a} 
\\ 
R_{\nu\rho}{}^a e_{\mu a} 
&= R_{\mu\nu}{}^a e_{\rho a} + R_{\rho\mu}{}^a e_{\nu a} 
\\ 
(\partial_{[\nu} e_{\rho]}{}^a - 
 \omega_{[\nu}{}^{ab} e_{\rho]}{}_b) e_{\mu a} 
&= (\partial_{[\mu} e_{\nu]}{}^a - 
    \omega_{[\mu}{}^{ab} e_{\nu]}{}_b) e_{\rho a} + 
   (\partial_{[\rho} e_{\mu]}{}^a - 
    \omega_{[\rho}{}^{ab} e_{\mu]}{}_b) e_{\nu a} 
\\ 
\partial_{[\nu} e_{\rho]}{}^a e_{\mu a} - 
\omega_{[\nu}{}^{ab} e_{\rho]}{}_b e_{\mu a}
&= \partial_{[\mu} e_{\nu]}{}^a e_{\rho a} - 
   \omega_{[\mu}{}^{ab} e_{\nu]}{}_b e_{\rho a} + 
   \partial_{[\rho} e_{\mu]}{}^a e_{\nu a} - 
   \omega_{[\rho}{}^{ab} e_{\mu]}{}_b e_{\nu a} 
\\ 
\omega_{[\mu}{}^{ab} e_{\nu]}{}{}_b e_{\rho a} + 
\omega_{[\rho}{}^{ab} e_{\mu]}{}_b e_{\nu a} - 
\omega_{[\nu}{}^{ab} e_{\rho]}{}_b e_{\mu a} 
&= \partial_{[\mu} e_{\nu]}{}^a e_{\rho a} + 
   \partial_{[\rho} e_{\mu]}{}^a e_{\nu a} - 
   \partial_{[\nu} e_{\rho]}{}^a e_{\mu a} 
\\[1ex]
\tfrac{1}{2}\omega_{\mu}{}^{ab} e_{\nu}{}{}_b e_{\rho a} -
\tfrac{1}{2}\omega_{\nu}{}^{ab} e_{\mu}{}{}_b e_{\rho a}  \qquad& \\
{}+\tfrac{1}{2} \omega_{\rho}{}^{ab} e_{\mu}{}_b e_{\nu a}  
  -\tfrac{1}{2}\omega_{\mu}{}^{ab} e_{\rho}{}_b e_{\nu a} \quad& \\
{}-\tfrac{1}{2}\omega_{\nu}{}^{ab} e_{\rho}{}_b e_{\mu a}
  +\tfrac{1}{2}\omega_{\rho}{}^{ab} e_{\nu}{}_b e_{\mu a} 
&= \partial_{[\mu}  e_{\nu]}{}^a  e_{\rho a} + 
   \partial_{[\rho} e_{\mu]}{}^a  e_{\nu a} - 
   \partial_{[\nu}  e_{\rho]}{}^a e_{\mu a} 
\\ 
\tfrac{1}{2}\omega_{\mu}{}^{ab} e_{\nu}{}{}_b e_{\rho a} -
\tfrac{1}{2}\omega_{\mu}{}^{ba} e_{\rho}{}_a e_{\nu b}     \qquad& \\ 
{}+\tfrac{1}{2}\omega_{\rho}{}^{ab} e_{\nu}{}_b e_{\mu a} 
  +\tfrac{1}{2} \omega_{\rho}{}^{ba} e_{\mu}{}_a e_{\nu b} \quad& \\
{}-\tfrac{1}{2}\omega_{\nu}{}^{ab} e_{\mu}{}{}_b e_{\rho a} 
  -\tfrac{1}{2}\omega_{\nu}{}^{ba} e_{\rho}{}_a e_{\mu b} 
&= \partial_{[\mu} e_{\nu]}{}^a e_{\rho a} + 
   \partial_{[\rho} e_{\mu]}{}^a e_{\nu a} - 
   \partial_{[\nu} e_{\rho]}{}^a e_{\mu a} 
\\ 
\tfrac{1}{2}\omega_{\mu}{}^{ab} e_{\nu}{}{}_b e_{\rho a} +
\tfrac{1}{2}\omega_{\mu}{}^{ab} e_{\rho}{}_a e_{\nu b}     \qquad& \\ 
{}+\tfrac{1}{2}\omega_{\rho}{}^{ab} e_{\nu}{}_b e_{\mu a} 
  -\tfrac{1}{2} \omega_{\rho}{}^{ab} e_{\mu}{}_a e_{\nu b} \quad& \\
{}-\tfrac{1}{2}\omega_{\nu}{}^{ab} e_{\mu}{}{}_b e_{\rho a} 
  +\tfrac{1}{2}\omega_{\nu}{}^{ab} e_{\rho}{}_a e_{\mu b} 
&= \partial_{[\mu} e_{\nu]}{}^a e_{\rho a} + 
   \partial_{[\rho} e_{\mu]}{}^a e_{\nu a} - 
   \partial_{[\nu} e_{\rho]}{}^a e_{\mu a} 
\\[1ex]
\omega_{\mu}{}^{ab} e_{\nu}{}{}_b e_{\rho a} + 0 + 0 
&= \partial_{[\mu} e_{\nu]}{}^a e_{\rho a} + 
   \partial_{[\rho} e_{\mu]}{}^c e_{\nu c} - 
   \partial_{[\nu} e_{\rho]}{}^c e_{\mu c} 
\\ 
\omega_{\mu}{}^{ab} e_{\nu}{}{}_b e_{\rho a} e^{\rho a} e^{\nu b}
&= \partial_{[\mu} e_{\nu]}{}^a e_{\rho a}e^{\rho a} e^{\nu b} + 
   \partial_{[\rho} e_{\mu]}{}^c e_{\nu c}e^{\rho a} e^{\nu b} - 
   \partial_{[\nu} e_{\rho]}{}^c e_{\mu c} e^{\rho a} e^{\nu b}
\\ 
\omega_{\mu}{}^{ab} 
&= \partial_{[\mu} e_{\nu]}{}^a e^{\nu b} + 
   \partial_{[\rho} e_{\mu]}{}^c \delta_c^b e^{\rho a} - 
   \partial_{[\nu} e_{\rho]}{}^c e_{\mu c} e^{\rho a} e^{\nu b}
\\ 
\omega_{\mu}{}^{ab} 
&= \partial_{[\mu} e_{\nu]}{}^a e^{\nu b} +   
   \partial_{[\rho} e_{\mu]}{}^b e^{\rho a} - 
   \partial_{[\nu} e_{\rho]}{}^c e_{\mu c} e^{\rho a} e^{\nu b}
\\ 
\omega_{\mu}{}^{ab} 
&= e^{\nu b}\partial_{[\mu} e_{\nu]}{}^a + 
   e^{\nu a}\partial_{[\nu} e_{\mu]}{}^b -
   e^{\rho a} e^{\lambda b} e_{\mu c} \partial_{[\lambda} e_{\rho]}{}^c
\\ 
\omega_{\mu}{}^{ab} 
&= 2 e^{\nu [b}\partial_{[\mu} e_{\nu]}{}^{a]} +
     e^{\rho a} e^{\lambda b} e_{\mu c} \partial_{[\rho} e_{\lambda]}{}^c
\\ 
\omega_{\mu}{}^{ab} 
&= -2 e^{\nu [a}\partial_{[\mu} e_{\nu]}{}^{b]} 
   +e^{\rho a} e^{\lambda b} e_{\mu c} \partial_{[\rho} e_{\lambda]}{}^c
\end{align*}
\end{document}

答案2

如果没有任何解释,推导过程就很难理解;在我看来,对齐等号并没有真正的帮助。

我建议始终采用左对齐,将较长的方程式在等号处分开,并稍微向右移动。

\documentclass{article}
\usepackage[a4paper,margin=2.5cm]{geometry}
\usepackage{amsmath,mathtools}

\begin{document}

\begin{equation}
\begin{aligned}[t] 
& 0 = 0+0+0 \\[1ex]
& 0 = R_{\mu\nu}{}^a e_{\rho a} + R_{\rho\mu}{}^a e_{\nu a} -R_{\nu\rho}{}^a e_{\mu a}
\\[1ex]
& R_{\nu\rho}{}^a e_{\mu a} = R_{\mu\nu}{}^a e_{\rho a} + R_{\rho\mu}{}^a e_{\nu a}
\\[1ex]
& (
   \partial_{[\nu} e_{\rho]}{}^a -
   \omega_{[\nu}{}^{ab} e_{\rho]}{}_b
  ) e_{\mu a}
   = (
      \partial_{[\mu} e_{\nu]}{}^a - \omega_{[\mu}{}^{ab} e_{\nu]}{}_b
     ) e_{\rho a} +
     (
      \partial_{[\rho} e_{\mu]}{}^a - \omega_{[\rho}{}^{ab} e_{\mu]}{}_b
     ) e_{\nu a}
\\[1ex]
& \partial_{[\nu} e_{\rho]}{}^a e_{\mu a} -
  \omega_{[\nu}{}^{ab} e_{\rho]}{}_b e_{\mu a}
  = \partial_{[\mu} e_{\nu]}{}^a e_{\rho a} -
    \omega_{[\mu}{}^{ab} e_{\nu]}{}_b e_{\rho a} +
    \partial_{[\rho} e_{\mu]}{}^a e_{\nu a} -
    \omega_{[\rho}{}^{ab} e_{\mu]}{}_b e_{\nu a}
\\[1ex]
& \omega_{[\mu}{}^{ab} e_{\nu]}{}{}_b e_{\rho a} +
  \omega_{[\rho}{}^{ab} e_{\mu]}{}_b e_{\nu a} -
  \omega_{[\nu}{}^{ab} e_{\rho]}{}_b e_{\mu a}
  = \partial_{[\mu} e_{\nu]}{}^a e_{\rho a}  +
    \partial_{[\rho} e_{\mu]}{}^a e_{\nu a} -
    \partial_{[\nu} e_{\rho]}{}^a e_{\mu a} \\[1ex]
& \tfrac{1}{2}\omega_{\mu}{}^{ab} e_{\nu}{}{}_b e_{\rho a} - 
  \tfrac{1}{2}\omega_{\nu}{}^{ab} e_{\mu}{}{}_b e_{\rho a} +
  \tfrac{1}{2} \omega_{\rho}{}^{ab} e_{\mu}{}_b e_{\nu a} -
  \tfrac{1}{2}\omega_{\mu}{}^{ab} e_{\rho}{}_b e_{\nu a} -
  \tfrac{1}{2}\omega_{\nu}{}^{ab} e_{\rho}{}_b e_{\mu a} +
  \tfrac{1}{2}\omega_{\rho}{}^{ab} e_{\nu}{}_b e_{\mu a} \\
& \qquad = \partial_{[\mu} e_{\nu]}{}^a e_{\rho a}  + 
    \partial_{[\rho} e_{\mu]}{}^a e_{\nu a} -
    \partial_{[\nu} e_{\rho]}{}^a e_{\mu a}
\\[1ex]
&\bigl(
   \tfrac{1}{2}\omega_{\mu}{}^{ab} e_{\nu}{}{}_b e_{\rho a} -
   \tfrac{1}{2}\omega_{\mu}{}^{ba} e_{\rho}{}_a e_{\nu b}
 \bigr) +
 \bigl(
   \tfrac{1}{2}\omega_{\rho}{}^{ab} e_{\nu}{}_b e_{\mu a} +
   \tfrac{1}{2} \omega_{\rho}{}^{ba} e_{\mu}{}_a e_{\nu b}
 \bigr) +
 \bigl(
   -\tfrac{1}{2}\omega_{\nu}{}^{ab} e_{\mu}{}{}_b e_{\rho a} -
   \tfrac{1}{2}\omega_{\nu}{}^{ba} e_{\rho}{}_a e_{\mu b}
 \bigr)\\
 & \qquad=   \partial_{[\mu} e_{\nu]}{}^a e_{\rho a}  +
   \partial_{[\rho} e_{\mu]}{}^a e_{\nu a} -
   \partial_{[\nu} e_{\rho]}{}^a e_{\mu a} 
\\[1ex]
&\bigl(
   \tfrac{1}{2}\omega_{\mu}{}^{ab} e_{\nu}{}{}_b e_{\rho a} +
   \tfrac{1}{2}\omega_{\mu}{}^{ab} e_{\rho}{}_a e_{\nu b}
 \bigr) +
 \bigl(
   \tfrac{1}{2}\omega_{\rho}{}^{ab} e_{\nu}{}_b e_{\mu a} -
   \tfrac{1}{2} \omega_{\rho}{}^{ab} e_{\mu}{}_a e_{\nu b}
 \bigr) +
 \bigl(
   -\tfrac{1}{2}\omega_{\nu}{}^{ab} e_{\mu}{}{}_b e_{\rho a} +
   \tfrac{1}{2}\omega_{\nu}{}^{ab} e_{\rho}{}_a e_{\mu b}
 \bigr)\\
& \qquad= \partial_{[\mu} e_{\nu]}{}^a e_{\rho a} +
    \partial_{[\rho} e_{\mu]}{}^a e_{\nu a} -
    \partial_{[\nu} e_{\rho]}{}^a e_{\mu a} 
\\[1ex]
&\omega_{\mu}{}^{ab} e_{\nu}{}{}_b e_{\rho a}  + 0 + 0 
  = \partial_{[\mu} e_{\nu]}{}^a e_{\rho a}  +
    \partial_{[\rho} e_{\mu]}{}^c e_{\nu c} -
    \partial_{[\nu} e_{\rho]}{}^c e_{\mu c} 
\\[1ex]
&\omega_{\mu}{}^{ab} e_{\nu}{}{}_b e_{\rho a} e^{\rho a} e^{\nu b}
  = \partial_{[\mu} e_{\nu]}{}^a e_{\rho a}e^{\rho a} e^{\nu b}  +
    \partial_{[\rho} e_{\mu]}{}^c e_{\nu c}e^{\rho a} e^{\nu b} -
    \partial_{[\nu} e_{\rho]}{}^c e_{\mu c} e^{\rho a} e^{\nu b}
\\[1ex]
&\omega_{\mu}{}^{ab} 
  = \partial_{[\mu} e_{\nu]}{}^a  e^{\nu b} +
    \partial_{[\rho} e_{\mu]}{}^c \delta_c^b e^{\rho a} -
    \partial_{[\nu} e_{\rho]}{}^c e_{\mu c} e^{\rho a} e^{\nu b}
\\[1ex]
&\omega_{\mu}{}^{ab}
  = \partial_{[\mu} e_{\nu]}{}^a  e^{\nu b}  +
    \partial_{[\rho} e_{\mu]}{}^b e^{\rho a} -
    \partial_{[\nu} e_{\rho]}{}^c e_{\mu c} e^{\rho a} e^{\nu b}
\\[1ex]
&\omega_{\mu}{}^{ab}
  = e^{\nu b}\partial_{[\mu} e_{\nu]}{}^a +
    e^{\nu a}\partial_{[\nu} e_{\mu]}{}^b -
    e^{\rho a} e^{\lambda b} e_{\mu c} \partial_{[\lambda} e_{\rho]}{}^c
\\[1ex]
&\omega_{\mu}{}^{ab}
  = 2 e^{\nu [b}\partial_{[\mu} e_{\nu]}{}^{a]} +
    e^{\rho a} e^{\lambda b} e_{\mu c} \partial_{[\rho} e_{\lambda]}{}^c
\\[1ex]
&\omega_{\mu}{}^{ab}
  = -2 e^{\nu [a}\partial_{[\mu} e_{\nu]}{}^{b]} +
    e^{\rho a} e^{\lambda b} e_{\mu c} \partial_{[\rho} e_{\lambda]}{}^c
\end{aligned}
\end{equation}

\end{document}

方程式之间的一些额外间距有助于区分它们。

不过,我真的希望每个主要步骤都有评论。

在此处输入图片描述

相关内容