答案1
您可以使用该optidef
包。
\documentclass{article}
\usepackage{amsmath}
\usepackage[nocomma]{optidef}
\begin{document}
The \emph{epigraph form} of the standard problem \eqref{st-prob} is the problem
\begin{mini}[2]
{}{t}{}{}
\addConstraint{f_0(x)-t}{\le 0}
\addConstraint{f_i(x)}{\le0\quad}{i=1,\dots,m}
\addConstraint{h_i(x)}{=0}{i=1,\dots,p,}
\end{mini}
with variables $x\in\mathbf{R}^n$ and $t\in\mathbf{R}$.
\end{document}
答案2
您只需使用tabular
内部环境即可equation
:
\documentclass{article}
\begin{document}
\noindent
The \textit{epigraph form} of the standard problem is the problem
\begin{equation}
\begin{tabular}{rl}
minimize & $t$\\
subject to & $f_0(x) - t \le 0$\\
& $f_i(x) \le 0$, \quad $i=1, \dots, m$\\
& $h_i(x) = 0$, \quad $i=1, \dots, p$,\\
\end{tabular}
\end{equation}
with variables $x\in R^n$ and \dots
\end{document}
答案3
使用array
或split
:
\documentclass{article}
\usepackage{amsmath, amssymb}
\begin{document}
With \verb+array+ \eqref{eq:array}:
\begin{equation}\label{eq:array}
\begin{array}{rl}
\text{minimize} & t\\
\text{subject to} & f_0(x) - t \le 0\\
& f_i(x) \le 0, \quad i=1, \dots, m\\
& h_i(x) = 0, \quad i=1, \dots, p,
\end{array}
\end{equation}
with variables $x \in \mathbb{R}^n$ and $t \in \mathbb{R}$. We can easily see \dots
\medskip
or with \verb+split+ \eqref{eq:split}:
\begin{equation}\label{eq:split}
\begin{split}
\text{minimize} \quad & t\\
\text{subject to} \quad & f_0(x) - t \le 0\\
& f_i(x) \le 0, \quad i=1, \dots, m\\
& h_i(x) = 0, \quad i=1, \dots, p,
\end{split}
\end{equation}
with variables $x \in \mathbb{R}^n$ and $t \in \mathbb{R}$. We can easily see \dots
\end{document}