长表剪切与脚注重叠的文本

长表剪切与脚注重叠的文本

我使用 longtable,因为我想在文本后嵌入,并让它继续到下一页。另外,我使用 multirow。不幸的是,其中一个单元格的文本奇怪地挂在脚注区域。我的代码:

\documentclass[11pt,titlepage,oneside,openany]{book}
\begin{document}
\begin{longtable}{|l|l|l|l|}
\hline
\begin{tabular}[c]{@{}l@{}}Benchmark\\ Data Set\end{tabular} & \begin{tabular}[c]{@{}l@{}}Accuracy \\ / Error\end{tabular} & Model & Paper \\ \hline
\multirow{ 3}{*}{SST-5} & 56.2                                                        & \begin{tabular}[c]{@{}l@{}}BCN+Suffix \\ BiLSTM-Tied+CoVe\end{tabular}                   & \begin{tabular}[c]{@{}l@{}}Improved Sentence Modeling \\ using Suffix Bidirectional LSTM\end{tabular}                                                           \\ \cline{2-4} 
                                                                                 & 55.5                                                        & BERTLARGE                                                                                & \begin{tabular}[c]{@{}l@{}}Fine-grained Sentiment \\ Classification using BERT\end{tabular}                                                                     \\ \cline{2-4} 
                                                                                 & 54.7                                                        & BCN+ELMo                                                                                 & \begin{tabular}[c]{@{}l@{}}Deep contextualized \\ word representations\end{tabular}                                                                             \\ \hline
\multirow{3}{*}{\begin{tabular}[c]{@{}l@{}}Yelp\\ Review\\ Full\end{tabular}}    & \begin{tabular}[c]{@{}l@{}}Error: \\ 27.80\end{tabular}     & XLNet                                                                                    & \begin{tabular}[c]{@{}l@{}}XLNet: Generalized Autoregressive\\ Pretraining for Language Understanding\end{tabular}                                              \\ \cline{2-4} 
                                                                                 & \begin{tabular}[c]{@{}l@{}}Error:\\ 28.62\end{tabular}      & BERT\_large+ITPT                                                                         & \begin{tabular}[c]{@{}l@{}}How to Fine-Tune BERT \\ for Text Classification?\end{tabular}                                                                       \\ \cline{2-4} 
                                                                                 & \begin{tabular}[c]{@{}l@{}}Error:\\ 29.32\end{tabular}      & BERT\_large                                                                              & \begin{tabular}[c]{@{}l@{}}Unsupervised Data Augmentation\\ for Consistency Training\end{tabular}                                                               \\ \hline
\thead\multirow{3}{*}{\begin{tabular}[c]{@{}l@{}}Amazon \\ Review\\ Full\end{tabular}} & 65.83                                                       & BERT\_large                                                                              & \begin{tabular}[c]{@{}l@{}}Unsupervised Data Augmentation\\ for Consistency Training\end{tabular}                                                               \\ \cline{2-4} 
                                                                                 & 65.19                                                       & Deep CNN                                                                                 & \begin{tabular}[c]{@{}l@{}}Deep Pyramid Convolutional Neural \\ Networks for Text Categorization\end{tabular}                                                   \\ \cline{2-4} 
                                                                                 & 64.43                                                       & Deep RNN                                                                                 & \begin{tabular}[c]{@{}l@{}}Disconnected Recurrent Neural \\ Networks for Text Categorization\end{tabular}                                                       \\ \hline
\multirow{3}{*}{\begin{tabular}[c]{@{}l@{}}SemEval \\ 2017 4C\end{tabular}}      & \begin{tabular}[c]{@{}l@{}}Error:\\ 0.481\end{tabular}      & \begin{tabular}[c]{@{}l@{}}LSTMs+CNNs\\ ensemble with \\ multiple conv. ops\end{tabular} & \begin{tabular}[c]{@{}l@{}}BB twtr at SemEval-2017 Task 4: \\ Twitter Sentiment Analysis \\ with CNNs and LSTMs\end{tabular}                                    \\ \cline{2-4} 
                                                                                 & \begin{tabular}[c]{@{}l@{}}Error:\\ 0.555\end{tabular}      & \begin{tabular}[c]{@{}l@{}}Deep Bi-LSTM\\ +attention\end{tabular}                        & \begin{tabular}[c]{@{}l@{}}DataStories at SemEval-2017 Task 4: \\ Deep LSTM with Attention for Message-\\ level and Topic-based Sentiment Analysis\end{tabular} \\ \cline{2-4} 
                                                                                 & \begin{tabular}[c]{@{}l@{}}Error:\\ 0.599\end{tabular}      & RNTN                                                                                     & \begin{tabular}[c]{@{}l@{}}Amobee at SemEval-2017 Task 4: \\ Deep Learning System for Sentiment \\ Detection on Twitter\end{tabular}                            \\ \hline
\caption[State of the Art Benchmark Results]{State of the Art Benchmark Results}
\label{fig:related_work}
\end{longtable}
\end{document}

在此处输入图片描述

先感谢您

相关内容