我有一个 16 x 16 矩阵。我想旋转并将其写在新页面上。奇数页和偶数页不同。
我的尝试如下:
\documentclass[12pt, reqno]{amsart}
\usepackage{amsmath, amsthm, amscd, amsfonts, amssymb, graphicx, color}
\usepackage{mathtools}
\usepackage{rotating}
\setcounter{MaxMatrixCols}{16} % default value is 10
%\usepackage[margin=1in,showframe]{geometry} % 'showframe' is there to indicate page margins
\usepackage[bookmarksnumbered, colorlinks, plainpages]{hyperref}
\textheight 22.5truecm \textwidth 14.5truecm
\setlength{\oddsidemargin}{0.35in}\setlength{\evensidemargin}{0.35in}
\setlength{\topmargin}{-.5cm}
\begin{document}
\newpage
1
\newpage
\begin{sidewaystable}
\scriptsize
\begin{align*}
\begin{bmatrix}
1&x_{{n}}&x^2_n&x^3_n&x^4_n&x^5_n&x^6_n&x_n^7&x_n^8&x_n^9&x_n^{10}&x_n^{11}&x_n^{12}&x_n^{13}&x_n^{14}\\ %\noalign{\medskip}
0&1&2x_n&3x_n^2&4x_n^3&5x_n^4&6x_n^5&7x_n^6&8x_n^7&9x_n^8&10x_n^9&11x_n^{10}&12x_n^{11}&13x_n^{12}&14x_n^{13} \\ %\noalign{\medskip}
0&1&2x_{n+\frac {5}{74}}&3x_{n+{\frac{5}{74}}}^2&4x_{n+{\frac {5}{74}}}^3&5x_{n+{\frac{5}{74}}}^4&6x_{n+{\frac{5}{74}}}^5&7x_{n+{\frac {5}{74}}}^6&8x_{n+{\frac {5}{74}}}^7&9x_{n+{\frac {5}{74}}}^
8&10x_{n+{\frac {5}{74}}}^9&11x_{n+{\frac {5}{74}}}^
{10}&12x_{n+{\frac {5}{74}}}^{11}&13x_{n+{\frac {5}{74}}}^
{12}&14x_{n+{\frac {5}{74}}}^{13}\\ %\noalign{\medskip}
0&1&2x_{n+\frac{1}{4}}&3x^2_{n+\frac{1}{4}}&4x^3_{n+\frac{1}{4}}&5x^4_{n+\frac{1}{4}}
&6\,{x_{{n+1/4}}}^{6}&7\,{x_{{n+1/4}}}^{6}&8\,{x_{{n+1/4}}}^{7}&9\,{x_
{{n+1/4}}}^{8}&10\,{x_{{n+1/4}}}^{9}&11\,{x_{{n+1/4}}}^{10}&12\,{x_{{n
+1/4}}}^{11}&13\,{x_{{n+1/4}}}^{12}&14\,{x_{{n+1/4}}}^{13}
\\ %\noalign{\medskip}
0&1&2x_{n+\frac{1}{2}}&3x_{{n+\frac{1}{2}}}^2&4x_{{n
+\frac{1}{2}}}^3&5x_{{n+\frac{1}{2}}}^{4}&6x_{{n+\frac{1}{2}}}^5&7x_{{n+\frac{1}{2}}}
^6&8x_{n+\frac{1}{2}}^7&9x_{n+\frac{1}{2}}^8&10x_{n+\frac{1}{2}}^9&
11x_{n+\frac{1}{2}}^{10}&12x_{n+\frac{1}{2}}^{11}&13x_{n+\frac{1}{2}}^{12}&
14x_{{n+1/2}}^{13}\\ \noalign{\medskip}0&1&2\,x_{{n+3/4}}&3\,{x_{{
n+3/4}}}^{2}&4\,{x_{{n+3/4}}}^{3}&5\,{x_{{n+3/4}}}^{4}&6\,{x_{{n+3/4}}
}^{5}&7\,{x_{{n+3/4}}}^{6}&8\,{x_{{n+3/4}}}^{7}&9\,{x_{{n+3/4}}}^{8}&
10\,{x_{{n+3/4}}}^{9}&11\,{x_{{n+3/4}}}^{10}&12\,{x_{{n+3/4}}}^{11}&13
\,{x_{{n+3/4}}}^{12}&14\,{x_{{n+3/4}}}^{13}\\ %\noalign{\medskip}
0&1&2
\,x_{{n+{\frac{69}{74}}}}&3\,{x_{{n+{\frac {69}{74}}}}}^{2}&4\,{x_{{n
+{\frac {69}{74}}}}}^{3}&5\,{x_{{n+{\frac {69}{74}}}}}^{3}&6\,{x_{{n+{
\frac {69}{74}}}}}^{5}&7\,{x_{{n+{\frac {69}{74}}}}}^{6}&8\,{x_{{n+{
\frac {69}{74}}}}}^{7}&9\,{x_{{n+{\frac {69}{74}}}}}^{8}&10\,{x_{{n+{
\frac {69}{74}}}}}^{9}&11\,{x_{{n+{\frac {69}{74}}}}}^{10}&12\,{x_{{n+
{\frac {69}{74}}}}}^{11}&13\,{x_{{n+{\frac {69}{74}}}}}^{12}&14\,{x_{{
n+{\frac {69}{74}}}}}^{13}\\ %\noalign{\medskip}
0&1&2\,x_{{n+1}}&3\,{x_
{{n+1}}}^{2}&4\,{x_{{n+1}}}^{3}&5\,{x_{{n+1}}}^{4}&6\,{x_{{n+1}}}^{5}&
7\,{x_{{n+1}}}^{6}&8\,{x_{{n+1}}}^{7}&9\,{x_{{n+1}}}^{8}&10\,{x_{{n+1}
}}^{9}&11\,{x_{{n+1}}}^{10}&12\,{x_{{n+1}}}^{11}&13\,{x_{{n+1}}}^{12}&
14\,{x_{{n+1}}}^{13}\\ %\noalign{\medskip}
0&0&2&6\,x_{{n}}&12\,{x_{{n}}
}^{2}&20\,{x_{{n}}}^{3}&30\,{x_{{n}}}^{4}&42\,{x_{{n}}}^{5}&56\,{x_{{n
}}}^{6}&72\,{x_{{n}}}^{7}&90\,{x_{{n}}}^{8}&110\,{x_{{n}}}^{9}&132\,{x
_{{n}}}^{10}&156\,{x_{{n}}}^{11}&182\,{x_{{n}}}^{12}
\\ %\noalign{\medskip}
0&0&2&6\,x_{{n+{\frac {5}{74}}}}&12\,{x_{{n+{
\frac {5}{74}}}}}^{2}&20\,{x_{{n+{\frac {5}{74}}}}}^{3}&30\,{x_{{n+{
\frac {5}{74}}}}}^{4}&42\,{x_{{n+{\frac {5}{74}}}}}^{5}&56\,{x_{{n+{
\frac {5}{74}}}}}^{6}&72\,{x_{{n+{\frac {5}{74}}}}}^{7}&90\,{x_{{n+{
\frac {5}{74}}}}}^{8}&110\,{x_{{n+{\frac {5}{74}}}}}^{9}&132\,{x_{{n+{
\frac {5}{74}}}}}^{10}&156\,{x_{{n+{\frac {5}{74}}}}}^{11}&182\,{x_{{n
+{\frac {5}{74}}}}}^{12}\\ %\noalign{\medskip}
0&0&2&6\,x_{{n+1/4}}&12\,
{x_{{n+1/4}}}^{2}&20\,{x_{{n+1/4}}}^{3}&30\,{x_{{n+1/4}}}^{4}&42\,{x_{
{n+1/4}}}^{5}&56\,{x_{{n+1/4}}}^{6}&72\,{x_{{n+1/4}}}^{7}&90\,{x_{{n+1
/4}}}^{8}&110\,{x_{{n+1/4}}}^{8}&132\,{x_{{n+1/4}}}^{10}&156\,{x_{{n+1
/4}}}^{11}&182\,{x_{{n+1/4}}}^{12}\\ %\noalign{\medskip}
0&0&2&6\,x_{{n+
1/2}}&12\,{x_{{n+1/2}}}^{2}&20\,{x_{{n+1/2}}}^{3}&30\,{x_{{n+1/2}}}^{4
}&42\,{x_{{n+1/2}}}^{5}&56\,{x_{{n+1/2}}}^{6}&72\,{x_{{n+1/2}}}^{7}&90
\,{x_{{n+1/2}}}^{8}&110\,{x_{{n+1/2}}}^{9}&132\,{x_{{n+1/2}}}^{10}&156
\,{x_{{n+1/2}}}^{11}&182\,{x_{{n+1/2}}}^{12}\\ %\noalign{\medskip}
0&0&2
&6\,x_{{n+3/4}}&12\,{x_{{n+3/4}}}^{2}&20\,{x_{{n+3/4}}}^{3}&30\,{x_{{n
+3/4}}}^{4}&42\,{x_{{n+3/4}}}^{5}&56\,{x_{{n+3/4}}}^{6}&72\,{x_{{n+3/4
}}}^{7}&90\,{x_{{n+3/4}}}^{8}&110\,{x_{{n+3/4}}}^{9}&132\,{x_{{n+3/4}}
}^{10}&156\,{x_{{n+3/4}}}^{11}&182\,{x_{{n+3/4}}}^{12}
\\ %\noalign{\medskip}
0&
0&
2&
6x_{n+\frac{69}{74}}&
12x_{n+{\frac{69}{74}}}^{2}&
20x_{n+{\frac{69}{74}}}^{3}&
30x_{n+{\frac{69}{74}}}^{4}&
42x_{n+{\frac{69}{74}}}^{5}&
56x_{n+{\frac{69}{74}}}^{6}&
72x_{n+{\frac{69}{74}}}^{7}&
90x_{n+{\frac{69}{74}}}^{8}&
110x_{n+{\frac{69}{74}}}^{9}&
132x_{n+{\frac{69}{74}}}^{10}&
156x_{n+{\frac{69}{74}}}^{11}&
182x_{n+{\frac {69}{74}}}^{12}\\ %\noalign{\medskip}
0&0&2&6x_{n+1}&
12x_{{n+1}}^{2}&20x_{n+1}^{3}&30x_{n+1}^{4}&42x_{{n
+1}}^{5}&56x_{{n+1}}^{6}&72x_{n+1}^{7}&90x_{{n+1}}^{8}&
110x_{{n+1}}^{9}&132x_{n+1}^{10}&156x_{n+1}^{11}&182x_{{n+1}}^{12}
% \end{bsmallmatrix}
\end{bmatrix}
\end{align*}
\end{sidewaystable}
\end{document}
问题。如何在页面内移动矩阵?