我有一个问题。当我想使用 hyphenat 包时,breaklines=true
on mmacells 包将无法工作。但是如果我删除 hyphenat 包,它就会工作。我不想删除我的 hyphenat 包,因为我真的需要它来在将文本拆分到下一行后摆脱单词分隔符破折号。我的意思是像这样:
那么,如何breaklines=true
同时使用 hyphenat 和 do?或者也许您有 hyphenat 的其他替代方法?
梅威瑟:
\documentclass{article}
\usepackage{mmacells, lipsum}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage[a4paper, inner=4cm, outer=3cm, top=4cm, bottom=3cm]{geometry}
\usepackage[none]{hyphenat}
\sloppy
\begin{document}
\begin{mmaCell}[morefunctionlocal={R},morelst={breaklines=true}]{Input}
Integrate[ Limit[E^(\mmaFnc{\(\pmb{\xi}\)}t)/(R-\mmaFnc{\(\pmb{\xi}\)}),R \(\pmb{\to}\)\mmaDef{\(\pmb{\infty}\)}],\{\mmaFnc{\(\pmb{\xi}\)},-\mmaUnd{\(\pmb{\sigma}\)},0\}]
\end{mmaCell}
\begin{mmaCell}{Output}
0
\end{mmaCell}
\begin{mmaCell}[morefunctionlocal={R},morelst={breaklines=true}]{Input}
\{Integrate[E^((\mmaDef{\(\pmb{\pi}\)}- 2\mmaFnc{\(\pmb{\theta}\)})/\mmaDef{\(\pmb{\pi}\)} (\mmaUnd{R} t +1)),\{\mmaFnc{\(\pmb{\theta}\)},\mmaDef{\(\pmb{\pi}\)}/2,\mmaDef{\(\pmb{\pi}\)}\}], Limit[(\mmaDef{\(\pmb{\pi}\)}(1 - E^(-(R t +1))))/(2(R t+1)),R \(\pmb{\to}\)\mmaDef{\(\pmb{\infty}\)},Assumptions\(\pmb{\to}\)t>0]\}
\end{mmaCell}
\begin{mmaCell}{Output}
\{\mmaFrac{\(\pi\)-\mmaSup{e}{-1-R t} \(\pi\)}{2+2 R t},0\}
\end{mmaCell}
\begin{mmaCell}[morelst={breaklines=true}]{Input}
\{Integrate[1/t E^(-\mmaFnc{\(\pmb{\lambda}\)}) Log[\mmaFnc{\(\pmb{\lambda}\)}-t], \{\mmaFnc{\(\pmb{\lambda}\)},t,\mmaDef{\(\pmb{\infty}\)}\},Assumptions\(\pmb{\to}\)t>0], Integrate[-1/t E^(-\mmaFnc{\(\pmb{\lambda}\)}) Log[\mmaFnc{\(\pmb{\lambda}\)}],\{\mmaFnc{\(\pmb{\lambda}\)},t, \mmaDef{\(\pmb{\infty}\)}\},Assumptions\(\pmb{\to}\)t>0]\}
\end{mmaCell}
\begin{mmaCell}{Output}
\{-\mmaFrac{\mmaSup{e}{-t} EulerGamma}{t},-\mmaFrac{Gamma[0,t]+\mmaSup{e}{-t} Log[t]}{t}\}
\end{mmaCell}
\begin{mmaCell}[morelst={breaklines=true}]{Input}
Integrate[1/t E^(-\mmaFnc{\(\pmb{\lambda}\)}) Log[(\mmaFnc{\(\pmb{\lambda}\)}-t)/\mmaFnc{\(\pmb{\lambda}\)}], \{\mmaFnc{\(\pmb{\lambda}\)} ,t,\mmaDef{\(\pmb{\infty}\)}\},Assumptions\(\pmb{\to}\)t>0]
\end{mmaCell}
\begin{mmaCell}[morelst={breaklines=true}]{Output}
\mmaFrac{1}{t}(EulerGamma+i (-1+\mmaSup{e}{-t}) \(\pi\)+t \mmaSup{Hypergeometric1F1}{(1,0,0)}[1,2,-t]-\mmaSup{HypergeometricU}{(1,0,0)}[0,0,-t])
\end{mmaCell}
\begin{mmaCell}[morelst={breaklines=true},moredefined={f1}]{Input}
f1=-\mmaFrac{\mmaSup{\mmaDef{e}}{-t} EulerGamma}{t}-\mmaFrac{Gamma[0,t]+\mmaSup{\mmaDef{e}}{-t} Log[t]}{t}
\end{mmaCell}
\begin{mmaCell}[morelst={breaklines=true}]{Output}
-\mmaFrac{\mmaSup{e}{-t} EulerGamma}{t}-\mmaFrac{Gamma[0,t]+\mmaSup{e}{-t} Log[t]}{t}
\end{mmaCell}
\begin{mmaCell}[moredefined={ff1},morelst={breaklines=true}]{Input}
ff1=\mmaFrac{1}{t}(EulerGamma+\mmaDef{i} (-1+\mmaSup{\mmaDef{e}}{-t}) \mmaDef{\(\pmb{\pi}\)}+t \mmaSup{Hypergeometric1F1}{(1,0,0)}[1,2,-t]-\mmaSup{HypergeometricU}{(1,0,0)}[0,0,-t])
\end{mmaCell}
\begin{mmaCell}[morelst={breaklines=true}]{Output}
\mmaFrac{1}{t}(EulerGamma+i (-1+\mmaSup{e}{-t}) \(\pi\)+t \mmaSup{Hypergeometric1F1}{(1,0,0)}[1,2,-t]-\mmaSup{HypergeometricU}{(1,0,0)}[0,0,-t])
\end{mmaCell}
\newpage\lipsum
\end{document}