我正在尝试创建一个在数学模式下包含四个项目的枚举列表,其中三个项目用大右花括号括起来。
我找到了一个使用该包的半解决方案multirow
,但它仅适用于花括号部分中的两项。
我希望找到一个涉及enumerate
或enumitem
包的解决方案,因为我希望能够将枚举的标签更改为罗马数字。有些答案使用了包tikzmark
,但我希望找到一些不那么大的机器。
如果您对我的问题有任何超出我的想法的优雅解决方案,那也很好!
这里有一个 MWE 供您测试(忽略大部分前言):
\documentclass[12pt]{report}
\usepackage[margin=1in]{geometry}
\usepackage[most]{tcolorbox}
\usepackage{amsmath , amsthm , amssymb, mathtools}
\usepackage{multirow}
\ExplSyntaxOn
\NewDocumentCommand{\betternewtcbtheorem}{O{}mmmm}
{
\newtcbtheorem[#1]{#2inner}{#3}{#4}{#5}
\NewDocumentEnvironment{#2}{O{}}
{
\keys_set:nn { hushus/tcb } { ##1 }
\hushus_tcb_begin:nVV {#2inner} \l__hushus_tcb_title_tl \l__hushus_tcb_label_tl
}
{
\end{#2inner}
}
\cs_if_exist:cF { c@#5} { \newcounter{#5} }
}
\cs_new_protected:Nn \hushus_tcb_begin:nnn
{
\begin{#1}{#2}{#3}
}
\cs_generate_variant:Nn \hushus_tcb_begin:nnn { nVV }
\keys_define:nn { hushus/tcb }
{
title .tl_set:N = \l__hushus_tcb_title_tl,
label .tl_set:N = \l__hushus_tcb_label_tl,
}
\ExplSyntaxOff
\betternewtcbtheorem[number within = chapter]{dfn}{Definition}%
{
enhanced,
before title = {\stepcounter{dfn}},
colback=blue!10,
colframe=blue!35!black,
fonttitle=\bfseries,
top=3mm,
attach boxed title to top left={xshift = 5mm, yshift=-1.5mm},
boxed title style = {colback=blue!35!black}
}{dfn}
\newcommand\rdot[1][.5]{\mathbin{\vcenter{\hbox{\scalebox{#1}{$\bullet$}}}}}
\begin{document}
\begin{dfn}[title=Subring]
A subring $S$ of a ring $R$ is a subgroup that is closed under multiplication. That is $S\subset R$ if $\forall a,b \in S$, \[
\begin{tabular}{ll}
(1) $a+b\in S$ \quad (closure under $+$) & \multirow{3}{*}{{\LARGE \}} $S$ is a subgroup} \\
(2) $0\in S$ \\
(3) $-a\in S$ \\
(4) $a\rdot b\in S$ (closure under $\rdot $)
\end{tabular}
\]
\end{dfn}
\end{document}
答案1
使用嵌套设置构造tabular
:前 3 行带有\left.
... \right\}
,最后一行作为外部/主要的一部分tabular
。
\begin{dfn}[title=Subring]
A subring $S$ of a ring $R$ is a subgroup that is closed under multiplication. That is $S\subset R$ if $\forall a,b \in S$, \[
\begin{tabular}{ l }
$\left.\kern-\nulldelimiterspace
\begin{tabular}{@{} l @{}}
(1) $a + b \in S$ \quad (closure under $+$) \\
(2) $0 \in S$ \\
(3) $-a \in S$
\end{tabular}\right\} S \text{ is a subgroup}$ \\
(4) $a \rdot b \in S$ (closure under $\rdot$)
\end{tabular}
\]
\end{dfn}