\begin{table}
\caption{Description of benchmark functions}
\label{tab:1}
\begin{tabular}{llll}
\hline\noalign{\smallskip}
Function & Dim & Range & $f_{min}$ \\
\noalign{\smallskip}\hline\noalign{\smallskip}
$F_1 (x)=\sum^{n}_{i=1}x_i^2 $&30 &[-100,100]&0\\
$F_2 (x)= \sum^{n}_{i=1} |x_i|+\prod^{n}_{i=1}|x_i|$&30 &[-10,10] &0\\
$F_3 (x)=\sum^{n}_{i=1}(\sum^{n}_{j-1}x_i^2)^2$&30 &[-100,100] &0\\
$F_4 (x)=\max_{i}{\{|x_i|,1\leq i\leq n\}}$&30 &[-100,100] &0\\
$F_5(x)=\sum^{n-1}_{i=1}[100(x_{i+1}-x_i^2)^2+(x_{i}-1)^2]$&30 &[-30,30] &0\\
$F_6(x)=\sum^{n}_{i=1}(|x_i+0.5|)^2$&30 &[-100,100] &0\\
$F_7(x)=\sum^{n}_{i=1}ix_{i}^4+rand(0,1)$&30& [-1.28,1.28]& 0\\
$F_8(x)=\sum^{n}_{i=1} - x_i sin(\sqrt{|x_i |})$&30& [-500,500] &−418.9829×5\\
$F_9(x)=\sum^{n}_{i=1}[x_i^2-cos(2\pi x_i)+10]$&30 &[-5.12,5.12] &0\\
$F_{10} (x)=-20\ exp(-0.2 \sqrt{1/n\sum^{n}_{i=1}x_i^2} \ )-exp(\dfrac{1}{n}\sum^{n}_{i=1}cos(2\pi x_i))+20+e$&30 &[-32,32] &0\\
$F_{11} (x)=\dfrac{1}{4000} \sum^{n}_{i=1} x_i^2-\pi_{i=1}^n cos(\dfrac{x_i}{\sqrt{i}})+1$&30& [-600,600]& 0\\
$F_{12} (x)=\dfrac{\pi}{n}\{10\ sin(\pi y_1 )+\sum^{n}_{i=1} (y_i-1)^2 [1+10\ sin^2(\pi y_{i+1} ) ]+(y_n-1)^2\}+\sum^{n}_{i=1} u(x_i,10,100,4)$&30 &[-50,50] &0\\
$y_i=1+\dfrac{x_i+1}{4}\ u(x_i,a,k,m)=
\begin{cases}
k(x_i-a)^m x_i>a \\
0-a<x_i<a\\
k(-x_i-a)^m \ x_i<-a
\end{cases}$&30& [-50,50]& 0\\
$F_{13} (x)=0.1\{sin^2(3\pi x_1 )+\sum^{n}_{i=1} (x_i-1)^2 [1+sin^2(3\pi x_i+1) ]+(x_n-1)^2 [1+sin^2(2\pi x_n ) ] \}+\sum^{n}_{i=1} u(x_i,5,100,4)$&30& [-50,50]& 0\\
$F_{14}(x)=(\dfrac{1}{500}+\sum^{25}_{j=1}\dfrac{1}{j+\sum^{2}_{i=1} (x_i-a_{ij} )^6 })^{-1}$&2& [-65,65] &1\\
$F_{15} (x)=\sum^{11}_{i=1} [a_i-(x_1 (b_i^2+b_i x_2 ))/(b_i^2+b_i x_3+x_4 )]^2$&4& [-5,5] &0.00030\\
$F_{16} (x)=4x_1^2-2.1x_1^4+\dfrac{1}{3} x_1^6+x_1 x_2-4x_2^2+4x_2^4$&2& [-5,5] &-1.0316\\
$F_{17} (x)=(x_2-\dfrac{5.1}{4\pi^2} x_1^2+\dfrac{2}{\pi} x_1-6)^2+10(1-\dfrac{1}{8\pi})cos\ x_1+10$&2& [-5,5] &0.398\\
$F_{18} (x)=[1+(x_1+x_2+1)^2 (19-14x_1+3x_1^2-14x_2+6x_1 x_2+3x_2^2 )]×[30+(2x_1-3x_2 )^2×(18-32x_1+12x_1^2+48x_2-36x_1 x_2+27x_2^2)]$&2& [-2,2] &3\\
$F_{19} (x)=-\sum^{4}_{i=1}\ c_i\ exp(-\sum^{3}_{j=1} a_{ij} (x_j-p_{ij} )^2)$&3& [1,3] &-3.86\\
$F_{20} (x)=-\sum^{4}_{i=1}\ c_i\ exp(-\sum^{6}_{j=1} a_{ij} (x_j-p_{ij} )^2)$&6& [0,1] &-3.32\\
$F_{21} (x)=-\sum^{5}_{i=1} [(x-a_i ) (x-a_i )^T+c_i ]^{-1}$&4& [0,10] &-10.1532\\
$F_{22} (x)=-\sum^{7}_{i=1} [(x-a_i ) (x-a_i )^T+c_i ]^{-1}$&4& [0,10] &-10.4028\\
$F_{23} (x)=-\sum^{10}_{i=1} [(x-a_i ) (x-a_i )^T+c_i ]^{-1}$&4& [0,10] &-10.5363\\
\noalign{\smallskip}\hline
\end{tabular}
\end{table}
答案1
为了使表格能够完全适应页面,您必须在公式中允许换行F_{12}
,F_{13}
尤其是。在下面的解决方案中,这是在包环境F_{13}
的帮助下完成的。aligned
amsmath
我还会用\frac
内联样式的分数项替换表达式,例如,用 替换\frac{1}{500}
。当然,除非您想破坏公式的外观,否则1/500
不要使用。\dfrac
您应该养成书写\sin
、、、和的习惯,而不仅仅是、、、和。\cos
\exp
\min
\max
sin
cos
exp
min
max
哦,由于表格内容几乎全部采用数学模式(标题行中的几个单词除外),因此我会使用环境array
而不是tabular
环境。如果没有其他选择,它可以让您摆脱大约 50 个$
符号,这对清理代码有很大帮助。
\documentclass{article} % or some other suitable document classs
\usepackage[letterpaper,margin=1in]{geometry} % set page parameters suitably
\usepackage{array,amsmath,booktabs}
\DeclareMathOperator{\rand}{rand}
\begin{document}
\begin{table}
\caption{Description of benchmark functions\strut}
\label{tab:1}
\setlength\extrarowheight{4pt} % more vertical space between rows
$\begin{array}{@{} llll @{}}
\toprule
\text{Function} & \text{Dim} & \text{Range} & f_{\min} \\
\midrule
F_1 (x)=\sum^{n}_{i=1}x_i^2 & 30 &[-100,100]&0\\
F_2 (x)= \sum^{n}_{i=1} |x_i|+\prod^{n}_{i=1}|x_i| & 30 & [-10,10] &0\\
F_3 (x)=\sum^{n}_{i=1}(\sum^{n}_{j-1}x_i^2)^2 & 30 &[-100,100] &0\\
F_4 (x)=\max_{i}{\{|x_i|,1\leq i\leq n\}} & 30 &[-100,100] &0\\
F_5(x)=\sum^{n-1}_{i=1}[100(x_{i+1}-x_i^2)^2+(x_{i}-1)^2] & 30 &[-30,30] &0\\
F_6(x)=\sum^{n}_{i=1}(|x_i+0.5|)^2&30 &[-100,100] &0\\
F_7(x)=\sum^{n}_{i=1}ix_{i}^4+\rand(0,1) & 30 & [-1.28,1.28]& 0\\
F_8(x)=\sum^{n}_{i=1} - x_i \sin(\sqrt{|x_i |}\,) & 30 & [-500,500] &-418.9829\cdot 5\\
% [I replaced a non-printing unicode character with "\cdot". Is that okay?]
F_9(x)=\sum^{n}_{i=1}[x_i^2-\cos(2\pi x_i)+10] & 30 &[-5.12,5.12] &0\\
F_{10} (x) = -20 \exp\bigl(-0.2 \sqrt{\frac{1}{n}\sum^{n}_{i=1}x_i^2} \,\bigr)
-\exp\bigl(\frac{1}{n}\sum^{n}_{i=1}\cos(2\pi x_i)\bigr)+20+e
&30 &[-32,32] &0\\
F_{11} (x)=(1/4000) \sum^{n}_{i=1} x_i^2-\prod_{i=1}^n \cos(x_i/i)+1 & 30 & [-600,600]& 0\\
\begin{aligned}[t]
F_{12} (x) &=\textstyle \frac{\pi}{n}\bigl\{^{\mathstrut} 10 \sin(\pi y_1 )
+\sum^{n}_{i=1} (y_i-1)^2 [1+10 \sin^2(\pi y_{i+1} ) ]+(y_n-1)^2 \bigr\} \\
&\qquad\textstyle +\sum^{n}_{i=1} u(x_i,10,100,4)
\end{aligned} &30 &[-50,50] &0\\
\begingroup \setlength\extrarowheight{0pt}
\qquad
y_i=1+\frac{1}{4}(x_i+1) \, u(x_i,a,k,m)=
\begin{cases}
k(x_i-a)^m & x_i>a \\
0 & -a<x_i<a\\
k(-x_i-a)^m & x_i<-a
\end{cases} \endgroup & 30 & [-50,50]& 0\\
\begin{aligned}[t]
F_{13} (x)
&= \textstyle 0.1 \bigl\{ \sin^2(3\pi x_1 )
+\sum^{n}_{i=1} (x_i-1)^2 [1+\sin^2(3\pi x_i+1) ] \\
&\qquad\textstyle +(x_n-1)^2 [1+\sin^2(2\pi x_n ) ] \bigr\}
+\sum^{n}_{i=1} u(x_i,5,100,4)
\end{aligned} & 30 & [-50,50]& 0\\
F_{14}(x)=\bigl[(1/500)+\sum^{25}_{j=1}(j+\sum^{2}_{i=1} (x_i-a_{ij} )^{-6} \bigr]^{-1} & 2 & [-65,65] &1\\
F_{15} (x)=\sum^{11}_{i=1} \bigl[a_i-(x_1 (b_i^2+b_i x_2 ))/(b_i^2+b_i x_3+x_4 )\bigr]^2 & 4 & [-5,5] &0.00030\\
F_{16} (x)=4x_1^2-2.1x_1^4+\frac{1}{3} x_1^6+x_1 x_2-4x_2^2+4x_2^4 & 2 & [-5,5] &-1.0316\\
F_{17} (x)=(x_2-5.1/(4\pi^2) x_1^2+(2/\pi) x_1-6)^2+10(1-1/(8\pi))\cos x_1+10&2& [-5,5] &0.398\\
\begin{aligned}[t]
F_{18} (x)
&=[1+(x_1+x_2+1)^2 (19-14x_1+3x_1^2-14x_2+6x_1 x_2+3x_2^2 )] \\
&\quad\times[30+(2x_1-3x_2 )^2 (18-32x_1+12x_1^2+48x_2-36x_1 x_2+27x_2^2)]
\end{aligned} & 2 & [-2,2] &3\\
F_{19} (x)=-\sum^{4}_{i=1} c_i\exp(-\sum^{3}_{j=1} a_{ij} (x_j-p_{ij})^2) & 3 & [1,3] &-3.86\\
F_{20} (x)=-\sum^{4}_{i=1} c_i\exp(-\sum^{6}_{j=1} a_{ij} (x_j-p_{ij})^2) & 6 & [0,1] &-3.32\\
F_{21} (x)=-\sum^{5}_{i=1} [(x-a_i ) (x-a_i )^T+c_i ]^{-1} & 4 & [0,10] &-10.1532\\
F_{22} (x)=-\sum^{7}_{i=1} [(x-a_i ) (x-a_i )^T+c_i ]^{-1} & 4 & [0,10] &-10.4028\\
F_{23} (x)=-\sum^{10}_{i=1} [(x-a_i ) (x-a_i )^T+c_i ]^{-1} & 4 & [0,10] &-10.5363\\
\bottomrule
\end{array}$
\end{table}
\end{document}
答案2
嗯,适合一页吗?是的,如果你将字体大小缩小到几乎无法阅读的大小并增加文本块。我宁愿使用普通字体,相应地定义文本块,并在两页上放置表格。
通过在第一列中使用longtable
,并使用包定义文本块:displaystyle
geometry
\documentclass{article}
\usepackage[showframe,
hmargin=25mm]{geometry}
\usepackage{mathtools}
\usepackage{array, booktabs, longtable}
\begin{document}
\setlength\tabcolsep{3pt}
\begin{longtable}{@{} >{$\displaystyle}l<{$} lll @{}}
\caption{Description of benchmark functions}
\label{tab:1} \\
\toprule
Function & Dim & Range & $f_{min}$ \\
\midrule
\endfirsthead
\caption[]{Description of benchmark functions} \\
\toprule
Function & Dim & Range & $f_{min}$ \\
\midrule
\endhead
\midrule
\multicolumn{4}{r}{\footnotesize\emph{Continue on the next page}}
\endfoot
\endlastfoot
F_1(x)=\sum^{n}_{i=1}x_i^2 & 30 & [-100,100] & 0\\
F_2(x)= \sum^{n}_{i=1} |x_i|+\prod^{n}_{i=1}|x_i|
& 30 & [-10,10] & 0\\
F_3(x)=\sum^{n}_{i=1}(\sum^{n}_{j-1}x_i^2)^2
& 30 & [-100,100] & 0\\
F_4(x)=\max_{i}{\{|x_i|,1\leq i\leq n\}}
& 30 & [-100,100] & 0\\
F_5(x)=\sum^{n-1}_{i=1}[100(x_{i+1}-x_i^2)^2+(x_{i}-1)^2]
& 30 & [-30,30] & 0\\
F_6(x)=\sum^{n}_{i=1}(|x_i+0.5|)^2 & 30 & [-100,100] & 0\\
F_7(x)=\sum^{n}_{i=1}ix_{i}^4+rand(0,1)
& 30 & [-1.28,1.28] & 0\\
F_8(x)=\sum^{n}_{i=1} - x_i\sin(\sqrt{|x_i|})
& 30 & [-500,500] & $-418.9829\times5$ \\
F_9(x)=\sum^{n}_{i=1}[x_i^2-\cos(2\pi x_i)+10]
& 30 &[-5.12,5.12] & 0 \\
\begin{multlined}[b]
F_{10} (x)=
-20\exp\biggl(-0.2 \sqrt{1/n\sum\nolimits^{n}_{i=1}x_i^2}\biggr) - \\[-2ex]
\exp\biggl(\frac{1}{n}\sum^{n}_{i=1}\cos(2\pi x_i)\biggr)
\end{multlined} + 20 + e
& 30 & [-32,32] & 0\\
F_{11} (x)=\frac{1}{4000} \sum^{n}_{i=1} x_i^2-\pi_{i=1}^n cos(\dfrac{x_i}{\sqrt{i}})+1
& 30 & [-600,600] & 0\\[4ex]
F_{12} (x)=\frac{\pi}{n}
\left\{\begin{array}{@{} r c @{}}
10\sin(\pi y_1 )+ & \\
\multicolumn{2}{@{\quad}r @{}}{
\sum\limits^{n}_{i=1} (y_i-1)^2 \Bigl[1 + 10\sin^2(\pi y_{i+1})\Bigr]
} +\\
& (y_n-1)^2
\end{array}\right\} +
\sum^{n}_{i=1} u(x_i,10,100,4)
& 30 & [-50,50] & 0\\[6ex]
y_i=1+\frac{x_i+1}{4} (x_i,a,k,m)=
\begin{cases}
k(x_i-a)^m x_i>a \\
0-a<x_i<a\\
k(-x_i-a)^m \ x_i<-a
\end{cases} & 30 & [-50,50] & 0\\
\begin{aligned}[b]
F_{13} (x) = 0.1
\left\{\begin{array}{@{} c @{}c @{}}
\sin^2(3\pi x_1 ) + & \begin{array}[t]{c}
\sum^{n}_{i=1} (x_i-1)^2 \Bigl[1 + \sin^2 (3\pi x_i + 1)\Bigr] + \\[1ex]
(x_n-1)^2 \Bigl[1 + \sin^2 (2\pi x_n) \Bigr]
\end{array}
\end{array}\right\} + \\
\sum^{n}_{i=1} u(x_i,5,100,4)
\end{aligned}
& 30 & [-50,50] & 0\\
F_{14}(x)=(\frac{1}{500}+\sum^{25}_{j=1}\frac{1}{j+\sum^{2}_{i=1} (x_i-a_{ij} )^6 })^{-1}
& 2 & [-65,65] & 1\\
F_{15} (x)=\sum^{11}_{i=1} [a_i-(x_1 (b_i^2+b_i x_2 ))/(b_i^2+b_i x_3+x_4 )]^2
& 4 & [-5,5] & 0.00030\\
F_{16} (x)=4x_1^2-2.1x_1^4+\frac{1}{3} x_1^6+x_1 x_2-4x_2^2+4x_2^4
& 2 & [-5,5] & -1.0316\\
F_{17} (x)=(x_2-\frac{5.1}{4\pi^2} x_1^2+\frac{2}{\pi} x_1-6)^2+10(1-\frac{1}{8\pi}) \cos(x_1) + 10
& 2 & [-5,5] & 0.398 \\
F_{18} (x)= \begin{multlined}[t]
[1+(x_1+x_2+1)^2 (19-14x_1+3x_1^2-14x_2+6x_1 x_2+3x_2^2 )] \times\\[-2ex]
[30+(2x_1-3x_2 )^2×(18-32x_1+12x_1^2+48x_2-36x_1 x_2+27x_2^2)]
\end{multlined}
& 2 & [-2,2] & 3 \\
F_{19} (x)=-\sum^{4}_{i=1}\ c_i\exp(-\sum^{3}_{j=1} a_{ij} (x_j-p_{ij} )^2)
& 3 & [1,3] & -3.86\\
F_{20} (x)=-\sum^{4}_{i=1}\ c_i\exp(-\sum^{6}_{j=1} a_{ij} (x_j-p_{ij} )^2)
& 6 & [0,1] & -3.32\\
F_{21} (x)=-\sum^{5}_{i=1} [(x-a_i ) (x-a_i )^T+c_i ]^{-1}
& 4 & [0,10] & -10.1532\\
F_{22} (x)=-\sum^{7}_{i=1} [(x-a_i ) (x-a_i )^T+c_i ]^{-1}
& 4 & [0,10] & -10.4028\\
F_{23} (x)=-\sum^{10}_{i=1} [(x-a_i ) (x-a_i )^T+c_i ]^{-1}
& 4 & [0,10] & -10.5363\\
\bottomrule
\end{longtable}
\end{document}