亲爱的,早上好。
我怎样才能以每页两列的形式保留以下排列?这是我使用的模型的模式。命令是:
{\renewcommand\arraystretch{1.0}
\noindent\begin{longtable*}{@{}l @{\quad=\quad} l@{}}
$A$ & surface area, $\mathrm{m^{2}}$ \\
$\hat{C}_{p}$ & heat capacity at constant pressure, $\mathrm{J/(kg.K)}$ \\
$\hat{C}_{v}$ & heat capacity at constant volume, $\mathrm{J/(kg.K)}$ \\
$C_{\varepsilon 1}$ & empirical constant of $\kappa-\varepsilon$ model \\
$C_{\varepsilon 2}$ & empirical constant of $\kappa-\varepsilon$ model \\
$C_{\mu}$ & empirical constant of $\kappa-\varepsilon$ model \\
$E_{b}$ & blackbody emissive power, $\mathrm{W/m^{2}}$ \\
$F_{ij}$ & view factor \\
$\boldsymbol{g}$ & gravity acceleration, $\mathrm{m/s^{2}}$ \\
$G$ & incident radiation or irradiation, $\mathrm{W/m^{2}}$ \\
$G_{0}$ & external radiation that reaches the surface in analysis, $\mathrm{W/m^{2}}$ \\
$H$ & reference physical domain height, $\mathrm{m}$ \\
$I$ & intensity of radiation, $\mathrm{W/(m^{2}.sr)}$ \\
${k_{t}}$ & thermal conductivity, W/(m.K) \\
$p_{-} r g h$ & absolute dynamic pseudo-pressure, $\mathrm{Pa}$ \\
$P$ & absolute total pressure, $\mathrm{Pa}$ \\
$\bar{P}$ & component average of pressure in the RANS model, $\mathrm{Pa}$ \\
$Pr$ & Prandtl number \\
$Pr_{t}$ & turbulent Prandtl number \\
$q_{conv}$ & convective heat flux, $\mathrm{W/m^{2}}$ \\
$q_{net}$ & net heat flux, $\mathrm{W/m^{2}}$ \\
$q_{rad}$ & radiative heat flux, $\mathrm{W/m^{2}}$ \\
$\bar{q}^{(v)}$ & viscous heat flux, $\mathrm{W/m^{2}}$ \\
$\bar{q}^{(t)}$ & turbulent heat flux, $\mathrm{W/m^{2}}$ \\
$r$ & radius, $\mathrm{m}$ \\
$R$ & gas constant, $\mathrm{J/(kg.K)}$ \\
$Ra_{H}$ & Rayleigh number calculated with the height as characteristic length \\
$t$ & time, $\mathrm{s}$ \\
$T$ & temperature, $\mathrm{K}$ \\
$\bar{T}$ & average temperature, $\mathrm{K}$ \\
$\tilde{T}$ & component average of temperature in the RANS model, $\mathrm{K}$ \\
$\boldsymbol{u}$ & velocity vector, $\mathrm{m/s}$ \\
$\overline{u_{\imath}^{\prime} T^{\prime}}$ & turbulent fluctuations in the RANS model, $\mathrm{(m.K)/s}$\\
$\bar{u}$ & average components of velocity in the RANS model, $\mathrm{m/s}$ \\
$u_{}^{\prime}$ & floating components of velocity in the RANS model, $\mathrm{m/s}$ \\
$U$ & velocity field OpenFOAM® parameter, $\mathrm{m/s}$ \\
$\hat{U}$ & specific internal energy, $\mathrm{J/kg}$ \\
$x$ & x coordinate, $\mathrm{m}$ \\
$y$ & y coordinate, $\mathrm{m}$ \\
$z$ & z coordinate, $\mathrm{m}$ \\
$z^{*}$ & elevation, $\mathrm{m}$ \\
$\alpha$ & under-relaxation factor \\
$\alpha_{t}$ & turbulent thermal diffusivity, $\mathrm{m^{2}/s}$ \\
$\beta$ & thermal coefficient of volume expansion, $\mathrm{K^{-1}}$ \\
$\delta_{i j}$ & Kronecker’s delta function\\
$\epsilon $ & emissivity \\
$\varepsilon $ & dissipation rate of turbulent kinetic energy, $\mathrm{{m^{2}}/{s^{3}}}$ \\
$\theta$ & polar angle, $\mathrm{rad}$ \\
$\kappa$ & turbulent kinetic energy, $\mathrm{{m^{2}}/{s^{2}}}$ \\
$\mu$ & dynamic viscosity, kg/(m.s)\\
$\mu _{t}$ & turbulence dynamic viscosity, kg/(m.s) \\
$\nu$ & kinematic viscosity, $\mathrm{m^{2}/s}$ \\
$\nu_{t}$ & turbulence kinematic viscosity, $\mathrm{m^{2}/s}$ \\
$\rho$ & fluid density, $\mathrm{kg/m^{3}}$ \\
$\bar{\rho}$ & fluid density evaluated in $\bar{T}$, $\mathrm{kg/m^{3}}$ \\
$\sigma_{\varepsilon}$ & empirical constant of $\kappa-\varepsilon$ model \\
$\sigma_{\kappa}$ & empirical constant of $\kappa-\varepsilon$ model \\
$\bar{\Phi}_{v}^{(v)}$ & viscous dissipation function, $\mathrm{s^{-2}}$ \\
$\bar{\Phi}_{v}^{(t)}$ & turbulent energy dissipation function, $\mathrm{s^{-2}}$ \\
$\Omega$ & solid angle, $\mathrm{sr}$ \\
\multicolumn{2}{@{}l}{\emph{Subscripts}}\\
$i$ & counter or index of summation \\
$j$ & counter or index of summation \\
\end{longtable*}}
第2行指出了以下错误:
软件包 longtable 错误:longtable 未处于 1 列模式。对齐时 516--537 行的 \hbox 过满(宽度过大 80.39828 pt)
感谢大家的关注和帮助。
此致。