我使用的是横向表格,其中最后一条记录需要跨越两列(合并)。下面给出了 MWC、观察到的输出和期望的输出。
世界移动通信大会
\documentclass[twocolumn]{svjour3}
\usepackage[english]{babel}
\usepackage{tabularx}
\usepackage{booktabs}
\usepackage{rotating}
\setlength{\rotFPtop}{0pt plus 1fil}
\usepackage{makecell}
\renewcommand{\theadfont}{\bfseries}
\begin{document}
\begin{sidewaystable*}
\caption{Comparison among state of the art designs}
\label{tab:1} % Give a unique label
\begin{tabularx}{\linewidth}{c
>{\raggedright\arraybackslash}p{0.85in}
>{\raggedright\arraybackslash}p{0.65in}
c
>{\raggedright\arraybackslash}p{0.75in}
c
c
>{\raggedright\arraybackslash}p{1.5in}
X}
\toprule
\thead{Reference}&\thead{Sensor\\type}&\thead{Sensor\\location}&\thead{No. of\\ sensors}&\thead{Processing\\location}&\thead{Method}&\thead{Accuracy\\in \%}&\thead{Features}&\thead{Limitations}\\
\midrule\\
[1]
& Accelerometer, Gyroscope
& External & $>1$ & On board & TB & Unknown
& Fine grained fall detection with good accuracy.
& No text based location, Fall and break of device aspect not considered.
\\
\addlinespace
[2]
& Triaxial Accelerometer
& External & 1 & On board and Remote
& TB & Unknown
&Fine grained fall detection with good accuracy. Reduced false alarm.
&Device location in pocket of pant. No real life implementation case study. Fall and break aspect not considered.
\\
\addlinespace
[3]
& Triaxial Accelerometer
& External & $>1$ & On board and remote
& ML & 91.83
&Fall detection and ADL based on KNN classifier with accuracy of 91.83\%
&Store \& analyse, no live data, device fall is not considered. \\
\addlinespace
[4]
&Camera
& External & $>1$ & Remote
& ML & Unknown
& Image information is used for fall classification.
&Slow, multiple image capturing device may be required, privacy issues.\\
\addlinespace
[5]
& Triaxial Accelerometer
& External & $>1$ & Remote
& TB + ML & Unknown
& Threshold analysis, reminder analysis and decision tree algorithm .
& The non-functional aspect of the device after a fall is not considered.\\
\addlinespace
[6]
& Pressure Sensor
&Integrated in the operator's shoe & $>1$ & remote
& TB & Unknown
& Good result accuracy and can be implemented in IOT platform.
& The nature of walking surface has a direct impact on accuracy.\\
\addlinespace
[7]
& Accelerometer, Gyroscope
&Smartphone in chest pocket & $>1$ & On board and remote
& TB & Unknown
& Smartphone Google API (location), Good accuracy.
& Device location is not suitable for heart patient, Google API is not accurate in remote locations.\\
\addlinespace
[8]
& MEMS tri-axis accelerometer
&Upper trunk of the body & 1 & Remote
& ML & Unknown
& Fall detection and prediction using hidden Markov chain.
& Location information as well as fall alike cases are not considered.\\
\addlinespace
[9]
& UHF-RFID
&Different locations inside the room & $>1$ & Remote
&TB + ML & Unknown
& Device and location independent fine grained fall detection.
& Not suitable for outdoor monitoring.\\
\addlinespace
Proposed system
& Smartphone accelerometer
&Gender and garment independent, easy to wear phone holder & 1 & Remote
&TB & Unknown
& Text based location + SMS, Indoor and outdoor monitoring , Ineffectual device consideration, Non ambulatory, Non self-recovery warning only so number of warnings are less, Simple fast and accurate.
\\
\bottomrule
\end{tabularx}
\end{sidewaystable*}
\end{document}
请帮忙。
答案1
只是tabular
和multicolumn
..
\documentclass[twocolumn]{svjour3}
\usepackage[english]{babel}
% \usepackage{tabularx}
\usepackage{booktabs}
\usepackage{rotating}
\setlength{\rotFPtop}{0pt plus 1fil}
\usepackage{makecell}
\renewcommand{\theadfont}{\bfseries}
\begin{document}
\begin{sidewaystable*}
\small
\caption{Comparison among state of the art designs}
\label{tab:1} % Give a unique label
\begin{tabular}{>{\raggedright\arraybackslash}p{0.60in} % changed to tabular and first column
>{\raggedright\arraybackslash}p{0.85in}
>{\raggedright\arraybackslash}p{0.95in} % increase width
c
>{\raggedright\arraybackslash}p{0.65in}
c
c
>{\raggedright\arraybackslash}p{1.5in}
>{\raggedright\arraybackslash}p{1.5in}} %changed from X
\toprule
\thead{Reference}&\thead{Sensor\\type}&\thead{Sensor\\location}&\thead{No. of\\ sensors}&\thead{Processing\\location}&\thead{Method}&\thead{Accuracy\\in \%}&\thead{Features}&\thead{Limitations}\\
\midrule\\
[1]
& Accelerometer, Gyroscope
& External & $>1$ & On board & TB & Unknown
& Fine grained fall detection with good accuracy.
& No text based location, Fall and break of device aspect not considered.
\\
\addlinespace
[2]
& Triaxial Accelerometer
& External & 1 & On board and Remote
& TB & Unknown
&Fine grained fall detection with good accuracy. Reduced false alarm.
&Device location in pocket of pant. No real life implementation case study. Fall and break aspect not considered.
\\
\addlinespace
[3]
& Triaxial Accelerometer
& External & $>1$ & On board and remote
& ML & 91.83
&Fall detection and ADL based on KNN classifier with accuracy of 91.83\%
&Store \& analyse, no live data, device fall is not considered. \\
\addlinespace
[4]
&Camera
& External & $>1$ & Remote
& ML & Unknown
& Image information is used for fall classification.
&Slow, multiple image capturing device may be required, privacy issues.\\
\addlinespace
[5]
& Triaxial Accelerometer
& External & $>1$ & Remote
& TB + ML & Unknown
& Threshold analysis, reminder analysis and decision tree algorithm .
& The non-functional aspect of the device after a fall is not considered.\\
\addlinespace
[6]
& Pressure Sensor
&Integrated in the operator's shoe & $>1$ & remote
& TB & Unknown
& Good result accuracy and can be implemented in IOT platform.
& The nature of walking surface has a direct impact on accuracy.\\
\addlinespace
[7]
& Accelerometer, Gyroscope
&Smartphone in chest pocket & $>1$ & On board and remote
& TB & Unknown
& Smartphone Google API (location), Good accuracy.
& Device location is not suitable for heart patient, Google API is not accurate in remote locations.\\
\addlinespace
[8]
& MEMS tri-axis accelerometer
&Upper trunk of the body & 1 & Remote
& ML & Unknown
& Fall detection and prediction using hidden Markov chain.
& Location information as well as fall alike cases are not considered.\\
\addlinespace
[9]
& UHF-RFID
&Different locations inside the room & $>1$ & Remote
&TB + ML & Unknown
& Device and location independent fine grained fall detection.
& Not suitable for outdoor monitoring.\\
\addlinespace
Proposed system
& Smartphone accelerometer
&Gender and garment independent, easy to wear phone holder & 1 & Remote
&TB & Unknown
& \multicolumn{2}{p{\dimexpr1.5in+1.5in+2\tabcolsep+\arrayrulewidth}}{% <<<< changed
Text based location + SMS, Indoor and outdoor monitoring, Ineffectual device consideration, Non ambulatory, Non self-recovery warning only so number of warnings are less, Simple fast and accurate.}
\\
\bottomrule
\end{tabular}
\end{sidewaystable*}
\end{document}
与问题无关:我减小了第一列的宽度并扩大了第三列的宽度,以减少该列的换行符。
更新
第三列标题可能看起来“有点偏离中心”,但实际上是居中的。
为了消除这种视觉错觉,请将标题行中的替换 \thead{Sensor\\location}
为\bfseries Sensor location
,并增加宽度以容纳更长的线条。
这是最终的外观和完整的代码。您可以对第二列的标题使用相同的方法。(\bfseries Sensor type
)
\documentclass[twocolumn]{svjour3}
\usepackage[english]{babel}
% \usepackage{tabularx}
\usepackage{booktabs}
\usepackage{rotating}
\setlength{\rotFPtop}{0pt plus 1fil}
\usepackage{makecell}
\renewcommand{\theadfont}{\bfseries}
\begin{document}
\begin{sidewaystable*}
\small
\caption{Comparison among state of the art designs}
\label{tab:1} % Give a unique label
\begin{tabular}{>{\raggedright\arraybackslash}p{0.60in} % changed to tabular and first column
>{\raggedright\arraybackslash}p{0.85in}
>{\raggedright\arraybackslash}p{1.1in} % increase width
c
>{\raggedright\arraybackslash}p{0.65in}
c
c
>{\raggedright\arraybackslash}p{1.5in}
>{\arraybackslash}p{1.5in}} %changed from X
\toprule
\thead{Reference}&\thead{Sensor\\type}& \bfseries Sensor location&\thead{No. of\\ sensors}&\thead{Processing\\location}&\thead{Method}&\thead{Accuracy\\in \%}&\thead{Features}&\thead{Limitations}\\
\midrule\\
[1]
& Accelerometer, Gyroscope
& External & $>1$ & On board & TB & Unknown
& Fine grained fall detection with good accuracy.
& No text based location, Fall and break of device aspect not considered.
\\
\addlinespace
[2]
& Triaxial Accelerometer
& External & 1 & On board and Remote
& TB & Unknown
&Fine grained fall detection with good accuracy. Reduced false alarm.
&Device location in pocket of pant. No real life implementation case study. Fall and break aspect not considered.
\\
\addlinespace
[3]
& Triaxial Accelerometer
& External & $>1$ & On board and remote
& ML & 91.83
&Fall detection and ADL based on KNN classifier with accuracy of 91.83\%
&Store \& analyse, no live data, device fall is not considered. \\
\addlinespace
[4]
&Camera
& External & $>1$ & Remote
& ML & Unknown
& Image information is used for fall classification.
&Slow, multiple image capturing device may be required, privacy issues.\\
\addlinespace
[5]
& Triaxial Accelerometer
& External & $>1$ & Remote
& TB + ML & Unknown
& Threshold analysis, reminder analysis and decision tree algorithm .
& The non-functional aspect of the device after a fall is not considered.\\
\addlinespace
[6]
& Pressure Sensor
&Integrated in the operator's shoe & $>1$ & remote
& TB & Unknown
& Good result accuracy and can be implemented in IOT platform.
& The nature of walking surface has a direct impact on accuracy.\\
\addlinespace
[7]
& Accelerometer, Gyroscope
&Smartphone in chest pocket & $>1$ & On board and remote
& TB & Unknown
& Smartphone Google API (location), Good accuracy.
& Device location is not suitable for heart patient, Google API is not accurate in remote locations.\\
\addlinespace
[8]
& MEMS tri-axis accelerometer
&Upper trunk of the body & 1 & Remote
& ML & Unknown
& Fall detection and prediction using hidden Markov chain.
& Location information as well as fall alike cases are not considered.\\
\addlinespace
[9]
& UHF-RFID
&Different locations inside the room & $>1$ & Remote
&TB + ML & Unknown
& Device and location independent fine grained fall detection.
& Not suitable for outdoor monitoring.\\
\addlinespace
Proposed system
& Smartphone accelerometer
&Gender and garment independent, easy to wear phone holder & 1 & Remote
&TB & Unknown
& \multicolumn{2}{p{\dimexpr1.5in+1.5in+2\tabcolsep+\arrayrulewidth\relax}}{% <<<< changed
Text based location + SMS, Indoor and outdoor monitoring, Ineffectual device consideration, Non ambulatory, Non self-recovery warning only so number of warnings are less, Simple fast and accurate.}
\\
\bottomrule
\end{tabular}
\end{sidewaystable*}
\end{document
答案2
您可以使用修改后的 X 列进行跨越
我没有上课所以页面大小有点不对,但是
&\multicolumn{2}{X}{%
\hsize=\dimexpr\hsize+1.5in+2\tabcolsep\relax
做你想做的事
\documentclass[twocolumn]{article}
\usepackage[english]{babel}
\usepackage{tabularx}
\usepackage{booktabs}
\usepackage{rotating}
\setlength{\rotFPtop}{0pt plus 1fil}
\usepackage{makecell}
\renewcommand{\theadfont}{\bfseries}
\advance\textheight 2in
\advance\textwidth 2in
\begin{document}
\begin{sidewaystable*}
\caption{Comparison among state of the art designs}
\label{tab:1} % Give a unique label
\begin{tabularx}{\linewidth}{c
>{\raggedright\arraybackslash}p{0.85in}
>{\raggedright\arraybackslash}p{0.65in}
c
>{\raggedright\arraybackslash}p{0.75in}
c
c
>{\raggedright\arraybackslash}p{1.5in}
X}
\toprule
\thead{Reference}&\thead{Sensor\\type}&\thead{Sensor\\location}&\thead{No. of\\ sensors}&\thead{Processing\\location}&\thead{Method}&\thead{Accuracy\\in \%}&\thead{Features}&\thead{Limitations}\\
\midrule\\
{[}1]
& Accelerometer, Gyroscope
& External & $>1$ & On board & TB & Unknown
& Fine grained fall detection with good accuracy.
& No text based location, Fall and break of device aspect not considered.
\\
\addlinespace
{[}2]
& Triaxial Accelerometer
& External & 1 & On board and Remote
& TB & Unknown
&Fine grained fall detection with good accuracy. Reduced false alarm.
&Device location in pocket of pant. No real life implementation case study. Fall and break aspect not considered.
\\
\addlinespace
{[}3]
& Triaxial Accelerometer
& External & $>1$ & On board and remote
& ML & 91.83
&Fall detection and ADL based on KNN classifier with accuracy of 91.83\%
&Store \& analyse, no live data, device fall is not considered. \\
\addlinespace
{[}4]
&Camera
& External & $>1$ & Remote
& ML & Unknown
& Image information is used for fall classification.
&Slow, multiple image capturing device may be required, privacy issues.\\
\addlinespace
{[}5]
& Triaxial Accelerometer
& External & $>1$ & Remote
& TB + ML & Unknown
& Threshold analysis, reminder analysis and decision tree algorithm .
& The non-functional aspect of the device after a fall is not considered.\\
\addlinespace
{[}6]
& Pressure Sensor
&Integrated in the operator's shoe & $>1$ & remote
& TB & Unknown
& Good result accuracy and can be implemented in IOT platform.
& The nature of walking surface has a direct impact on accuracy.\\
\addlinespace
{[}7]
& Accelerometer, Gyroscope
&Smartphone in chest pocket & $>1$ & On board and remote
& TB & Unknown
& Smartphone Google API (location), Good accuracy.
& Device location is not suitable for heart patient, Google API is not accurate in remote locations.\\
\addlinespace
{[}8]
& MEMS tri-axis accelerometer
&Upper trunk of the body & 1 & Remote
& ML & Unknown
& Fall detection and prediction using hidden Markov chain.
& Location information as well as fall alike cases are not considered.\\
\addlinespace
{[}9]
& UHF-RFID
&Different locations inside the room & $>1$ & Remote
&TB + ML & Unknown
& Device and location independent fine grained fall detection.
& Not suitable for outdoor monitoring.\\
\addlinespace
Proposed system
& Smartphone accelerometer
&Gender and garment independent, easy to wear phone holder & 1 & Remote
&TB & Unknown
&\multicolumn{2}{X}{%
\hsize=\dimexpr\hsize+1.5in+2\tabcolsep\relax
Text based location + SMS, Indoor and outdoor monitoring , Ineffectual device consideration, Non ambulatory, Non self-recovery warning only so number of warnings are less, Simple fast and accurate.}
\\
\bottomrule
\end{tabularx}
\end{sidewaystable*}
\end{document}