Beamer 中的方程式从 0.1 而不是 1 开始枚举?

Beamer 中的方程式从 0.1 而不是 1 开始枚举?

我不知道如何解决这个问题,我尝试找到一些旧资源,但谷歌搜索大多会给出其他文档类别的提示,而且经常从章节变为文章或类似内容。这是序言和等式

\documentclass{beamer}
\usepackage{amsmath,amssymb,latexsym,amsthm}

\usefonttheme{serif}


\setbeamertemplate{footline}[frame number]{}
\setbeamertemplate{navigation symbols}{}

\usecolortheme{lily}
\setbeamercolor{block title}{bg=blue!20,fg=black}
\setbeamercolor{block body}{bg = blue!10, fg = black}
\setbeamertemplate{itemize item}[square]
\setbeamercolor{itemize item}{fg = cyan}
\setbeamercolor{enumerate item}{fg = cyan}

\usetheme{default}
\beamertemplatenavigationsymbolsempty
\setbeamercolor{titlelike}{fg=cyan}

\def\B{{\mathcal B}}
\def\K{{\mathcal K}}
\def\H{{\mathcal H}}
\def\I{{\mathcal I}}
\def\N{{\mathbb N}}
\def\T{{\mathbb T}}
\def\NN{{\mathcal N}}
\def\C{{\mathbb C}}
\def\R{{\mathbb R}}
\def\Z{{\mathbb Z}}
\def\D{{\mathbb D}}
\def\M{{\mathcal M}}
\def\L{{\mathcal L}}
\def\E{{\mathcal E}}
\def\CC{{\mathfrak C}}
\def\CI{C^\infty(a,b)}
\def\la{\lambda}
% \def\L{\Lambda}
\def\bl{\overline{\lambda}}
\def\bz{\overline{\zeta}}
\def\v{\varphi}
\def\p{\psi}
\def\u{{\bf u}}
\def\j{{\bf j}}
\def\i{{\bf i}}
\def\x{{\bf x}}
\def\y{{\bf y}}
\def\f{{\bf f}}
\def\g{{\bf g}}
\def\o{\omega}
\def\s{\sigma}
\def\al{\alpha}
\def\ld{,\ldots,}
\def\z{\zeta}
\def\te{\theta}
%\def\g{\gamma}
\def\fv{\frac{f}{\varphi}}
\def\fvi{\frac{f_i}{\varphi_i}}
\newcommand{\nequation}{\setcounter{equation}{0}}
\renewcommand{\theequation}{\mbox{\arabic{section}.\arabic{equation}}}
\newcommand{\Span}[1]{\mathsf{Span} ( #1 )}
\newcommand{\Ker}[1]{\mathsf{Ker}~ }
\newcommand{\re}[1]{\mathsf{Re} ( #1 )}
\newcommand{\Ran}{\mathsf{Ran}~ }
\newcommand{\di}[1]{\mathsf{dim}~ }
\newcommand{\codim}[1]{\mathsf{codim}~ }
\newcommand{\norm}[1]{\left\Vert#1\right\Vert}
\newcommand{\de}[1]{\mathsf{det} ( #1 )}
\newcommand{\ba}[1]{\mathsf{ball} ( #1 )}
\newcommand{\dist}[1]{\mathsf{dist} ( #1 )}

\parindent 0pt
\parskip 4pt


\DeclareMathOperator\arctanh{arctanh}
\DeclareMathOperator\arcsinh{arcsinh}
%Information to be included in the title page:


\begin{document}


    \begin{frame}{}
Let $\Omega \subset \mathbb{C}$ be open, connected and containing the origin. We assume that the function $\Phi:\Omega\to\C$ is analytic in $\Omega$ with $\Phi(0) = 0$, Re$\Phi'(0) > 0$.  \pause
\begin{definition}
We say that $\Omega$ is {\bf $\Phi$-like}  
 if \ $\forall \alpha \in \Omega$ the initial value problem
\begin{equation}\label{Eq1}
    \begin{cases}
      \frac{dw}{dt} = -\Phi(w)\\
      w(0) = \alpha
    \end{cases}\,.
\end{equation}
has a solution $w$ defined on $[0,\infty)$ with\\ (i)  $w(t) \in \Omega,~t\ge 0$,\\ (ii) $\lim_{t\to\infty}w(t)= 0$. 
\end{definition} 
\end{frame}
\end{document}

相关内容