我有一组超过二十几个方程式,几乎占了两页纸。我想把它们写得整齐,这样它们看起来干净易读。我现在的看起来很糟糕。我束手无策,不知道该如何对齐/书写它们,让它们看起来尽可能好。这是我现在的(只有一页,还有另一页我没有包括在这里) 我想肯定有更好的方法来排版所有这些方程式。我真正想了解的是,在这种情况下,当一个人有几十个方程式时,最佳做法是什么——有的长,有的短;有的只有一行,而其他的似乎要排成多行。如何对齐/书写它们,使它们看起来不那么残忍?这是我的方程式列表文件(请原谅我发布了整个代码,我有意识地避免使用术语 MWE,因为它在我看来肯定不是那样的,但我把它全部包括在这里,因为我认为这可能是思考这个问题的解决方案所需要的):
\documentclass[12pt,a4paper]{article}
\usepackage[margin=1.9cm]{geometry}
\usepackage{amsmath, amsfonts, amsthm, amssymb,epsfig}
\begin{document}
\section{System of Loglinear Equations}
\begin{equation}
\begin{aligned}
\beta^{P}\gamma^{P}\mathbb{E}_{t}\widehat{C}_{t+1}^{P} - \left(1 + \left(\gamma^{P}\right)^{2}\beta^{P}\right) \widehat{C}_{t}^{P} + \gamma^{P}\widehat{C}_{t-1}^{P} = \left(1 - \beta^{P}\gamma^{P}\right)\left(1 - \gamma^{P}\right) \widehat{\lambda}^{P}
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\mathbb{E}_{t}\widehat{\lambda}_{t+1}^{P} & = \widehat{\lambda}_{t}^{P} - \hat{R}_{t}^{D}
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\left(1 - \beta^{P}\right)\left(\widehat{\varsigma}_{t} - \widehat{H}_{t}^{P}\right) + \beta^{P}\mathbb{E}_{t}\left[\widehat{\lambda}_{t+1}^{P} + \widehat{Q}_{t+1}^{H}\right] = \widehat{\lambda}_{t}^{P} + \widehat{Q}_{t}^{H}
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\widehat{\iota}_{t} = \widehat{\lambda}_{t}^{P} + \widehat{W}_{t}
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\beta^{E}\gamma^{E}\mathbb{E}_{t}\widehat{C}_{t+1}^{E} - \left(1 + \left(\gamma^{E}\right)^{2}\beta^{E}\right)\widehat{C}_{t}^{E} + \gamma^{E}\widehat{C}_{t-1}^{E} = \left(1 - \beta^{E}\gamma^{E}\right)\left(1 - \gamma^{E}\right)\widehat{\lambda}_{t}^{E}
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\widehat{R}_{t}^{L} + \beta^{E}R^{L}\mathbb{E}_{t}\widehat{\lambda}_{t+1}^{E} + \left(1 - \beta^{E}R^{L}\right)\widehat{\mu}_{t}^{E} = \widehat{\lambda}_{t}^{E}
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\widehat{W}_{t} = \widehat{Y}_{t} - \widehat{N}_{t}
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\left(\widehat{\lambda}_{t}^{E} + \widehat{Q}_{t}^{H}\right) = \beta^{E}\mathbb{E}_{t}\big(\widehat{\lambda}_{t+1}^{E} & + \widehat{Q}_{t+1}^{H}\big) + \bigg(\frac{1}{R^{L}} - \beta^{E}\bigg)\theta\mathbb{E}_{t}\big(\widehat{\mu}_{t}^{E} + \widehat{\theta}_{t} + \widehat{W}_{t+1}^{H}\big) + \ldots \\
& \mathrel{\phantom{=}} \ldots + \bigg[\big(1 - \beta^{E}\big) - \theta\bigg(\frac{1}{R^{L}} - \beta^{E}\bigg)\bigg]\mathbb{E}_{t}\big[\widehat{\lambda}_{t+1}^{E} + \widehat{Y}_{t+1} - \widehat{H}_{t}^{E}\big]
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\widehat{Q}_{t}^{K} = \big[1 & - \beta^{E}\big(1 - \delta\big) - \theta\big(\frac{1}{R^{L}} - \beta^{E}\big)\big]\mathbb{E}_{t}\big[\widehat{\lambda}_{t+1}^{E} - \lambda_{t}^{E} + \widehat{Y}_{t+1} - K_{t}\big] + \ldots \\
& \ldots + \beta^{E}\big(1 - \delta\big)\mathbb{E}_{t}\big(\widehat{Q}_{t+1}^{K} + \widehat{\lambda}_{t+1}^{E} - \widehat{\lambda}_{t}^{E}\big) + \left(1 - \beta^{E}R^{L}\right)\frac{1}{R^{L}}\theta\mathbb{E}_{t}\left[\widehat{\mu}_{t}^{E} - \widehat{\lambda}_{t}^{E} + \widehat{\theta}_{t} + \widehat{Q}_{t+1}^{K}\right]
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\widehat{Q}_{t}^{K} = \left(1 + \beta^{E}\right)\Omega\widehat{I}_{t} - \beta^{E}\Omega\mathbb{E}_{t}\widehat{I}_{t+1} - \Omega\widehat{I}_{t-1}
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\frac{\mu^{B}}{\beta^{P}}\widehat{\mu}_{t}^{B} & - \mu^{B}\gamma^{L}\big(1 - \rho_{s}\big)\mathbb{E}_{t}\mu_{t+1}^{B} = \big[p R^{L} - R^{D} + \big(1 - p\big)\tau R^{L} + \mu^{B}\gamma^{L}\big(1 - \rho_{s}\big)\big]\mathbb{E}_{t}\widehat{q}_{t, t+1} + \ldots \\
& \ldots + p R^{L}\left(\widehat{p}_{t} + \widehat{R}_{t}^{L}\right) - R^{D}\widehat{R}_{t}^{D} + \left(1 - p\right)\tau R^{L}\widehat{R}_{t}^{L} - p \tau R^{L}\widehat{p}_{t}
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\frac{\eta\xi\mu^{B}x}{\theta}\big(\widehat{\mu}_{t}^{B} & + \widehat{x}_{t} - \widehat{\theta}_{t}\big) = -\varpi\beta^{P}\big(R^{L}\big)^{2}L \theta\big(2\widehat{R}_{t}^{L} + \widehat{L}_{t} + \widehat{\theta}_{t} + \mathbb{E}_{t}\widehat{q}_{t, t+1}\big) - \ldots \\
& \ldots - \eta \varpi \beta^{P}R^{L}L\left(\widehat{R}_{t}^{L} + \widehat{L}_{L} + \mathbb{E}_{t}\widehat{q}_{t, t+1}\right) + \varpi \tau \beta^{P}\alpha\theta^{2}R^{L}\left(\widehat{a}_{t} + 2\widehat{\theta}_{t} + \widehat{R}_{t}^{L} + \mathbb{E}_{t}\widehat{q}_{t, t+1}\right) + \ldots \\
& \ldots + \eta \varpi \tau \beta^{P} \theta a\left(\widehat{a}_{t} + \widehat{\theta}_{t} + \mathbb{E}_{t}\widehat{q}_{t, t+1}\right)
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\xi\mu^{B}x\theta\left(\widehat{\mu}_{t}^{B} + \widehat{x}_{t} + \widehat{\theta}_{t}\right) = \theta\beta^{P}R^{L}pL\left(\widehat{\theta}_{t} + \widehat{R}_{t}^{L} + \widehat{p}_{t} + \widehat{L}_{t} + \mathbb{E}_{t}\widehat{q}_{t, t+1}\right) + \eta \beta^{P}pL\left(\widehat{p}_{t} + \widehat{L}_{t} + \mathbb{E}_{t}\widehat{q}_{t, t+1}\right)
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\widehat{s}_{t} = \rho_{s}\widehat{s}_{t, t-1} + \left(1 - \rho_{s}\right)\widehat{l}_{t}
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\widehat{x}_{t} = \frac{\widehat{l}_{t}}{1 - \gamma^{L}} - \frac{\gamma^{L}\widehat{s}_{t-1}}{1 - \gamma^{L}}
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\widehat{L}_{t} = \widehat{l}_{t}
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\widehat{Y}_{t} = \frac{C^{P}}{C}\widehat{C}_{t}^{P} + \frac{C^{E}}{Y}\widehat{C}_{t}^{E} + \frac{I}{Y}\widehat{I}_{t}
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
H^{P}\widehat{H}_{t}^{P} + H^{E}\widehat{H}_{t}^{E} = 0
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\widehat{L}_{t} = \widehat{D}_{t}
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
C^{E}\widehat{C}_{t}^{E} & + R^{L}l\left(\widehat{R}_{t-1}^{L} + \widehat{l}_{t-1}\right) = Y\widehat{Y}_{t} - WN\left(\widehat{W}_{t} + \widehat{N}_{t}\right) - I\widehat{I}_{t} - Q^{H}H^{E}\left(\widehat{H}_{t}^{E} - \widehat{H}_{t-1}^{E}\right) + \ldots\\
& \ldots + x\widehat{x}_{t} + \gamma^{L}s\widehat{s}_{t-1} + R^{L}L\left(\widehat{R}_{t-1}^{L} + \widehat{L}_{t-1}\right) -\tau a \widehat{a}_{t-1} - p R^{L}L\left(\widehat{p}_{t-1} + \widehat{R}_{t-1}^{L} + \widehat{L}_{t-1}\right) + \ldots \\
& \ldots + \tau p a \left(\widehat{p}_{t-1} + \widehat{a}_{t-1}\right)
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\widehat{l}_{t} = \widehat{\theta}_{t} + \widehat{a}_{t} - \widehat{R}_{t}^{L}
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\widehat{a}_{t} = \frac{Q^{H}H^{E}}{Q^{H}H^{E} + Q^{K}K}\mathbb{E}_{t}\left(\widehat{Q}_{t+1}^{H} + \widehat{H}_{t}^{E}\right) + \frac{Q^{K}K}{Q^{H}H^{E} + Q^{K}K}\mathbb{E}_{t}\left(\widehat{Q}_{t+1}^{K} + \widehat{K}_{t}\right)
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\widehat{Y}_{t} = \widehat{A}_{t} + \left(1 - \alpha\right)\widehat{N}_{t} + \alpha \phi \widehat{H}_{t-1}^{E} + \alpha \left(1 - \phi\right) \widehat{K}_{t-1}
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\widehat{K}_{t} = \left(1 - \delta\right) \widehat{K}_{t-1} + \delta \widehat{I}_{t}
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
p\widehat{p}_{t} = \varpi \theta \widehat{\theta}_{t}
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\widehat{\kappa}_{t}^{E} = \widehat{\lambda}_{t}^{E} + \widehat{Q}_{t}^{K}
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\widehat{q}_{t, t+1} = \widehat{\lambda}_{t+1}^{P} - \widehat{\lambda}_{t}^{P}
\end{aligned}
\end{equation}
\end{document}
答案1
也许你会喜欢它:
\documentclass[12pt,a4paper,fleqn]{article}
\usepackage[margin=1.9cm]{geometry}
\usepackage{amssymb, nccmath, mathtools}
\allowdisplaybreaks
\begin{document}
\section{System of Loglinear Equations}
\begin{fleqn}
\begin{spreadlines}{2ex}
\begin{gather}
\beta^{P}\gamma^{P}\mathbb{E}_{t}\widehat{C}_{t+1}^{P} -
\bigl(1 + (\gamma^{P}\bigr)^{2}\beta^{P}\bigr)
\widehat{C}_{t}^{P} + \gamma^{P}\widehat{C}_{t-1}^{P}
= \bigl(1 - \beta^{P}\gamma^{P}\bigr)\bigl(1 - \gamma^{P}\bigr) \widehat{\lambda}^{P}
\mathbb{E}_{t}\widehat{\lambda}_{t+1}^{P} = \widehat{\lambda}_{t}^{P} - \hat{R}_{t}^{D}
\\
\left(1 - \beta^{P}\right)\left(\widehat{\varsigma}_{t} - \widehat{H}_{t}^{P}\right) + \beta^{P}\mathbb{E}_{t}\left[\widehat{\lambda}_{t+1}^{P} + \widehat{Q}_{t+1}^{H}\right] = \widehat{\lambda}_{t}^{P} + \widehat{Q}_{t}^{H}
\\
\widehat{\iota}_{t} = \widehat{\lambda}_{t}^{P} + \widehat{W}_{t}
\\
\beta^{E}\gamma^{E}\mathbb{E}_{t}\widehat{C}_{t+1}^{E} -
\left(1 + \left(\gamma^{E}\right)^{2}\beta^{E}\right)\widehat{C}_{t}^{E} + \gamma^{E}\widehat{C}_{t-1}^{E}
= \left(1 - \beta^{E}\gamma^{E}\right)\left(1 - \gamma^{E}\right)\widehat{\lambda}_{t}^{E}
\\
\widehat{R}_{t}^{L} + \beta^{E}R^{L}\mathbb{E}_{t}\widehat{\lambda}_{t+1}^{E} + \left(1 - \beta^{E}R^{L}\right)\widehat{\mu}_{t}^{E} = \widehat{\lambda}_{t}^{E}
\\
\widehat{W}_{t} = \widehat{Y}_{t} - \widehat{N}_{t}
\\
\begin{multlined}
\left(\widehat{\lambda}_{t}^{E} + \widehat{Q}_{t}^{H}\right) = \beta^{E}\mathbb{E}_{t}\big(\widehat{\lambda}_{t+1}^{E}
+ \widehat{Q}_{t+1}^{H}\big) + \bigg(\frac{1}{R^{L}} - \beta^{E}\bigg)\theta\mathbb{E}_{t}\big(\widehat{\mu}_{t}^{E} + \widehat{\theta}_{t} + \widehat{W}_{t+1}^{H}\big) + \ldots
\\
\mathrel{\phantom{=}} \ldots + \bigg[\big(1 - \beta^{E}\big) - \theta\bigg(\frac{1}{R^{L}} - \beta^{E}\bigg)\bigg]\mathbb{E}_{t}\big[\widehat{\lambda}_{t+1}^{E} + \widehat{Y}_{t+1} - \widehat{H}_{t}^{E}\big]
\end{multlined}
\\
\begin{multlined}
\widehat{Q}_{t}^{K} = \big[1 - \beta^{E}\big(1 - \delta\big) - \theta\big(\frac{1}{R^{L}} - \beta^{E}\big)\big]
\mathbb{E}_{t}\big[\widehat{\lambda}_{t+1}^{E} - \lambda_{t}^{E} + \widehat{Y}_{t+1} - K_{t}\big] + \ldots \\
\ldots + \beta^{E}\big(1 - \delta\big)\mathbb{E}_{t}\big(\widehat{Q}_{t+1}^{K} + \widehat{\lambda}_{t+1}^{E} - \widehat{\lambda}_{t}^{E}\big) + \left(1 - \beta^{E}R^{L}\right)\frac{1}{R^{L}}\theta\mathbb{E}_{t}\left[\widehat{\mu}_{t}^{E} - \widehat{\lambda}_{t}^{E} + \widehat{\theta}_{t} + \widehat{Q}_{t+1}^{K}\right]
\end{multlined}
\\
\widehat{Q}_{t}^{K} = \left(1 + \beta^{E}\right)\Omega\widehat{I}_{t} - \beta^{E}\Omega\mathbb{E}_{t}\widehat{I}_{t+1} - \Omega\widehat{I}_{t-1}
\\
\begin{multlined}
\frac{\mu^{B}}{\beta^{P}}\widehat{\mu}_{t}^{B} - \mu^{B}\gamma^{L}\big(1 - \rho_{s}\big)\mathbb{E}_{t}\mu_{t+1}^{B} = \big[p R^{L} - R^{D} + \big(1 - p\big)\tau R^{L} + \mu^{B}\gamma^{L}\big(1 - \rho_{s}\big)\big]\mathbb{E}_{t}\widehat{q}_{t, t+1} + \ldots \\
\ldots + p R^{L}\left(\widehat{p}_{t} + \widehat{R}_{t}^{L}\right) - R^{D}\widehat{R}_{t}^{D} + \left(1 - p\right)\tau R^{L}\widehat{R}_{t}^{L} - p \tau R^{L}\widehat{p}_{t}
\end{multlined}
\\
\begin{multlined}
\frac{\eta\xi\mu^{B}x}{\theta}(\widehat{\mu}_{t}^{B} + \widehat{x}_{t} - \widehat{\theta}_{t}) =
-\varpi\beta^{P}\big(R^{L}\big)^{2}L \theta\big(2\widehat{R}_{t}^{L} + \widehat{L}_{t} + \widehat{\theta}_{t} + \mathbb{E}_{t}\widehat{q}_{t, t+1}\big) - \ldots \\
\ldots - \eta \varpi \beta^{P}R^{L}L\left(\widehat{R}_{t}^{L} + \widehat{L}_{L} + \mathbb{E}_{t}\widehat{q}_{t, t+1}\right) +
\varpi \tau \beta^{P}\alpha\theta^{2}R^{L}\left(\widehat{a}_{t} + 2\widehat{\theta}_{t} + \widehat{R}_{t}^{L} + \mathbb{E}_{t}\widehat{q}_{t, t+1}\right) + \ldots\\
\ldots + \eta \varpi \tau \beta^{P} \theta \left(\widehat{a}_{t} + \widehat{\theta}_{t} + \mathbb{E}_{t}\widehat{q}_{t, t+1}\right)
\end{multlined}
\\
\xi\mu^{B}x\theta\left(\widehat{\mu}_{t}^{B} + \widehat{x}_{t} + \widehat{\theta}_{t}\right) = \theta\beta^{P}R^{L}pL\left(\widehat{\theta}_{t} + \widehat{R}_{t}^{L} + \widehat{p}_{t} + \widehat{L}_{t} + \mathbb{E}_{t}\widehat{q}_{t, t+1}\right) + \eta \beta^{P}pL\left(\widehat{p}_{t} + \widehat{L}_{t} + \mathbb{E}_{t}\widehat{q}_{t, t+1}\right)
\\
\widehat{s}_{t} = \rho_{s}\widehat{s}_{t, t-1} + \left(1 - \rho_{s}\right)\widehat{l}_{t}
\\
\widehat{x}_{t} = \frac{\widehat{l}_{t}}{1 - \gamma^{L}} - \frac{\gamma^{L}\widehat{s}_{t-1}}{1 - \gamma^{L}}
\\
\widehat{L}_{t} = \widehat{l}_{t}
\\
\widehat{Y}_{t} = \frac{C^{P}}{C}\widehat{C}_{t}^{P} + \frac{C^{E}}{Y}\widehat{C}_{t}^{E} + \frac{I}{Y}\widehat{I}_{t}
\\
H^{P}\widehat{H}_{t}^{P} + H^{E}\widehat{H}_{t}^{E} = 0
\\
\widehat{L}_{t} = \widehat{D}_{t}
\\
\begin{multlined}
C^{E}\widehat{C}_{t}^{E} + R^{L}l\left(\widehat{R}_{t-1}^{L} + \widehat{l}_{t-1}\right) =\\
Y\widehat{Y}_{t} - WN\left(\widehat{W}_{t} + \widehat{N}_{t}\right) - I\widehat{I}_{t} - Q^{H}H^{E}\left(\widehat{H}_{t}^{E} - \widehat{H}_{t-1}^{E}\right) + \ldots\\
\ldots + x\widehat{x}_{t} + \gamma^{L}s\widehat{s}_{t-1} + R^{L}L\left(\widehat{R}_{t-1}^{L} + \widehat{L}_{t-1}\right) -\tau a \widehat{a}_{t-1} - p R^{L}L\left(\widehat{p}_{t-1} + \widehat{R}_{t-1}^{L} + \widehat{L}_{t-1}\right) + \ldots \\
\ldots + \tau p a \left(\widehat{p}_{t-1} + \widehat{a}_{t-1}\right)
\end{multlined}
\\
\widehat{l}_{t} = \widehat{\theta}_{t} + \widehat{a}_{t} - \widehat{R}_{t}^{L}
\\
\widehat{a}_{t} = \frac{Q^{H}H^{E}}{Q^{H}H^{E} + Q^{K}K}\mathbb{E}_{t}\left(\widehat{Q}_{t+1}^{H} + \widehat{H}_{t}^{E}\right) + \frac{Q^{K}K}{Q^{H}H^{E} + Q^{K}K}\mathbb{E}_{t}\left(\widehat{Q}_{t+1}^{K} + \widehat{K}_{t}\right)
\\
\widehat{Y}_{t} = \widehat{A}_{t} + \left(1 - \alpha\right)\widehat{N}_{t} + \alpha \phi \widehat{H}_{t-1}^{E} + \alpha \left(1 - \phi\right) \widehat{K}_{t-1}
\\
\widehat{K}_{t} = \left(1 - \delta\right) \widehat{K}_{t-1} + \delta \widehat{I}_{t}
\\
p\widehat{p}_{t} = \varpi \theta \widehat{\theta}_{t}
\\
\widehat{\kappa}_{t}^{E} = \widehat{\lambda}_{t}^{E} + \widehat{Q}_{t}^{K}
\\
\widehat{q}_{t, t+1} = \widehat{\lambda}_{t+1}^{P} - \widehat{\lambda}_{t}^{P}
\end{gather}
\end{spreadlines}
\end{fleqn}
\end{document}
但是,在这个方程列表中很容易迷失方向。您应该考虑在每个方程之前或相关方程组列表中插入文本,以描述其含义。为此,您可以使用\intertext
在中定义的指令amsmath
(也可以在中找到mathtools
):
\documentclass[12pt,a4paper,fleqn]{article}
\usepackage[margin=1.9cm]{geometry}
\usepackage{amssymb, nccmath, mathtools}
\allowdisplaybreaks
\mathtoolsset{original-intertext,original-shortintertext}
\begin{document}
\section{System of Loglinear Equations}
\begin{spreadlines}{2ex}
\begin{fleqn}
\begin{gather}
\intertext{diference of ... :} % here insert meaningful text
\beta^{P}\gamma^{P}\mathbb{E}_{t}\widehat{C}_{t+1}^{P} -
\bigl(1 + (\gamma^{P}\bigr)^{2}\beta^{P}\bigr)
\widehat{C}_{t}^{P} + \gamma^{P}\widehat{C}_{t-1}^{P}
= \bigl(1 - \beta^{P}\gamma^{P}\bigr)\bigl(1 - \gamma^{P}\bigr) \widehat{\lambda}^{P}
\intertext{probability:} % here insert meaningful text
\mathbb{E}_{t}\widehat{\lambda}_{t+1}^{P} = \widehat{\lambda}_{t}^{P} - \hat{R}_{t}^{D}
\end{gather}
\end{fleqn}
\end{spreadlines}
\end{document}