答案1
这是使用推入边缘的tcolorbox
包来实现此目的的一种方法。\tcbox
\documentclass{article}
\usepackage{tcolorbox}
\usepackage{amsmath,amssymb} % needed for \dotsb and \mathbb
\usepackage{blindtext} % needed for filler text from \blindtext
\newcounter{example}
\newenvironment{example}{%
\tcbox[
enlarge left by=-10em,
left=0mm,
right=0mm,
top=0mm,
bottom=0mm,
sharp corners,
colback=black!30,
colframe=black!20]
{Example \refstepcounter{example}\theexample.}
\vspace{-2em}\noindent
}{%
\\
}
\begin{document}
\blindtext
\begin{example}
Let \(p\) and \(q\) be distinct odd primes.
Prove that the equation
\[x_1^2 - x_2^2 + x_3^2 - x_4^2 + \dotsb + x_p^2 = 1\]
has \(q^{p-1} + q^{\frac{p-1}{2}}\) solutions in \((\mathbb{Z}/q\mathbb{Z})^p\).
Deduce a new proof of the quadratic reciprocity law.
\hfill [Wouter Castryck]
\end{example}
\blindtext
\addtocounter{example}{10}
\begin{example}
Here is an example with a higher counter value.
\end{example}
\blindtext
\end{document}