但情况变得混乱:
\begin{equation}
\begin{aligned}
H_x(\rho_c,\phi_c,z_c)&=-\frac{1}{2\pi k\eta}\int_0^\infty F_y(k_{\rho c})\Big[\Big(k^2-\frac{1}{2}k^2_{\rho c}\Big)J_0(k_{\rho c} \rho_c)+\frac{1}{2}k^2_{\rho c}\cos{(2\phi_c)}J_2(k_{\rho c}\rho_c)\Big]\\
%
&\times e^{-jk_{zc}z_c}\frac{k_{\rho c}}{k_{zc}}dk_{\rho c}\\
H_x(\rho_c,\phi_c,z_c)=-\frac{\sin{(\phi_c)}}{4\pi k\eta}\int_0^\infty F_y(k_{\rho c})J_2(k_{\rho c} \rho_c)e^{-jk_{zc}z_c}\frac{k^2_{\rho c}}{k_{zc}}dk_{\rho c}\\
%
H_z(\rho_c,\phi_c,z_c)=-\frac{j\cos{(2\phi_c)}}{2\pi k\eta}\int_0^\infty F_y(k_{\rho c})J_1(k_{\rho c} \rho_c)e^{-jk_{zc}z_c}k^2_{\rho c}dk_{\rho c}\\
\end{aligned}
\label{eqch2_55}
\end{equation}
如果我尝试使用“split”环境,它会列举我想要避免的每个方程式。提前致谢。
答案1
它太宽了,正如您&
在最后两行中省略的那样。另外使用\Bigl
and 而\Bigr
不是 `\Big。我在 [ 之前而不是 ] 之后断开,但它仍然太宽,所以我最终在两处都断开,并强制进行一些额外的缩进。
\documentclass[a4paper]{article}
\usepackage{amsmath}
\begin{document}
\begin{equation}
\begin{aligned}
H_x(\rho_c,\phi_c,z_c)&=-\frac{1}{2\pi k\eta}\int_0^\infty F_y(k_{\rho c})\\
&\qquad \Bigl[\Bigl(k^2-\frac{1}{2}k^2_{\rho c}\Bigr)J_0(k_{\rho c} \rho_c)+\frac{1}{2}k^2_{\rho c}\cos{(2\phi_c)}J_2(k_{\rho c}\rho_c)\Bigr]\\
&\qquad\qquad e^{-jk_{zc}z_c}\frac{k_{\rho c}}{k_{zc}}dk_{\rho c}\\[\jot]
H_x(\rho_c,\phi_c,z_c)&=-\frac{\sin{(\phi_c)}}{4\pi k\eta}\int_0^\infty F_y(k_{\rho c})J_2(k_{\rho c} \rho_c)e^{-jk_{zc}z_c}\frac{k^2_{\rho c}}{k_{zc}}dk_{\rho c}\\[\jot]
%
H_z(\rho_c,\phi_c,z_c)&=-\frac{j\cos{(2\phi_c)}}{2\pi k\eta}\int_0^\infty F_y(k_{\rho c})J_1(k_{\rho c} \rho_c)e^{-jk_{zc}z_c}k^2_{\rho c}dk_{\rho c}
\end{aligned}
\label{eqch2_55}
\end{equation}
\end{document}
也许
\documentclass[a4paper]{article}
\usepackage{amsmath}
\begin{document}
\begin{equation}
\begin{aligned}
H_x(\rho_c,\phi_c,z_c)&=-\frac{1}{2\pi k\eta}\int_0^\infty F_y(k_{\rho c})
\Bigl[\Bigl(k^2-\frac{1}{2}k^2_{\rho c}\Bigr)J_0(k_{\rho c} \rho_c)+{}\\
& \qquad\qquad\qquad\frac{1}{2}k^2_{\rho c}\cos{(2\phi_c)}J_2(k_{\rho c}\rho_c)\Bigr]
e^{-jk_{zc}z_c}\frac{k_{\rho c}}{k_{zc}}dk_{\rho c}\\[\jot]
H_x(\rho_c,\phi_c,z_c)&=-\frac{\sin{(\phi_c)}}{4\pi k\eta}\int_0^\infty F_y(k_{\rho c})J_2(k_{\rho c} \rho_c)e^{-jk_{zc}z_c}\frac{k^2_{\rho c}}{k_{zc}}dk_{\rho c}\\[\jot]
%
H_z(\rho_c,\phi_c,z_c)&=-\frac{j\cos{(2\phi_c)}}{2\pi k\eta}\int_0^\infty F_y(k_{\rho c})J_1(k_{\rho c} \rho_c)e^{-jk_{zc}z_c}k^2_{\rho c}dk_{\rho c}
\end{aligned}
\label{eqch2_55}
\end{equation}
\end{document}
答案2
这是一个解决方案,它 (a) 填补了&
第二和第三个方程中缺失的对齐粒子,并且 (b) 使用环境aligned
来格式化跨越前两行的被积函数。此解决方案还将 的两个实例替换为\frac{1}{2}
,这可以显著减少这两行中大括号的大小。最后,也可能是最不重要的,它在 的三个实例之前\tfrac{1}{2}
插入(thinspace) 。\,
dk_{\rho c}
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{equation}
\begin{split}
H_x(\rho_c,\phi_c,z_c)
&=-\frac{1}{2\pi k\eta}\int_0^\infty \!
\begin{aligned}[t]
&F_y(k_{\rho c})\bigl[
(k^2-\tfrac{1}{2}k^2_{\rho c})J_0(k_{\rho c} \rho_c)\\
&+\tfrac{1}{2}k^2_{\rho c}\cos{(2\phi_c)}J_2(k_{\rho c}\rho_c)\bigr]
e^{-jk_{zc}z_c}\frac{k_{\rho c}}{k_{zc}}\,dk_{\rho c}
\end{aligned}\\
%
H_x(\rho_c,\phi_c,z_c)
&=-\frac{\sin{(\phi_c)}}{4\pi k\eta}\int_0^\infty \!
F_y(k_{\rho c})J_2(k_{\rho c} \rho_c)
e^{-jk_{zc}z_c}\frac{k^2_{\rho c}}{k_{zc}}\,dk_{\rho c}\\
%
H_z(\rho_c,\phi_c,z_c)
&=-\frac{j\cos{(2\phi_c)}}{2\pi k\eta}\int_0^\infty \!
F_y(k_{\rho c})J_1(k_{\rho c} \rho_c)
e^{-jk_{zc}z_c}k^2_{\rho c}\,dk_{\rho c}
\end{split}
\label{eqch2_55}
\end{equation}
\end{document}