\tabcolsep 和 supertabular

\tabcolsep 和 supertabular

在将简单表格转换为超级制表器时,编译器持续工作了很长时间。经过调查,我发现 \tabcolsep into p{} 可能是问题所在... 你们能向我解释一下为什么会出现这种情况吗?也许这也是一个坏习惯,所以告诉我其他原因。

提前致谢!

梅威瑟:

\documentclass{article}
\usepackage{supertabular, booktabs}

%%These packaged should not interfer imo but I let them in case it has something to do with my problem
\newcommand{\tabitem}{~~\llap{\textbullet}~~}

\usepackage{array} %% Array m option in particular (center and sized)
\usepackage{diagbox} %% Array diagonal box
\usepackage{multirow} %for multi row in table


\begin{document}
    \begin{center}    
    \tablefirsthead{%
    \toprule{}
    AI/ML Models & Prediction & Optimisation/ Automation & Analysis & Modelling/
    Simulation \\
    \midrule{}
    }
    \tablehead{%
    %\hline\multicolumn{4}{|l|}{\small\sl continued from previous page}\\
    \toprule{}
    AI/ML Models & Prediction & Optimisation/ Automation & Analysis & Modelling/
    Simulation \\
    \midrule{}
    }
    \tabletail{%
    \bottomrule{}
    }
    \tablelasttail{%
    \bottomrule{}
    }
    %%Notworking
    %\begin{supertabular}{@{}p{0.20\textwidth-\tabcolsep}p{0.22\textwidth-2\tabcolsep}p{0.20\textwidth-2\tabcolsep}p{0.18\textwidth-2\tabcolsep}p{0.20\textwidth-\tabcolsep}@{}}
    %%Working
    \begin{supertabular}{@{}p{0.20\textwidth}|r@{\hspace{5.5mm}}|r|r|r|}
    1   &     1  &        1  &           1    \\
    2   &     4  &       16  &           2    \\
    3   &     9  &       81  &           6    \\
    4   &    16  &      256  &          24    \\
    [5mm]...19  &   361  &   130321  &  1.21645100E+17\\
    20  &   400  &   160000  &  2.43290200E+18\\
    \end{supertabular}
    \end{center}
\end{document}

编辑:

感谢 David Carlisle 和这个帖子,我更新了第一个 MWE 如下:

\documentclass{article}
    \usepackage{supertabular, booktabs}
\newcommand{\tabitem}{~~\llap{\textbullet}~~}

\usepackage{array} %% Array m option in particular (center and sized)
\usepackage{diagbox} %% Array diagonal box
\usepackage{multirow} %for multi row in table

\begin{document}



\begin{center}
\tablefirsthead{%
\toprule{}
AI/ML Models & Prediction & Optimisation/ Automation & Analysis & Modelling/
Simulation \\ \midrule{} \\
}
\tablehead{%
%\hline\multicolumn{4}{|l|}{\small\sl continued from previous page}\\
\toprule{}
AI/ML Models & Prediction & Optimisation/ Automation & Analysis & Modelling/
Simulation \\ \midrule{} \\
}
\tabletail{%
\bottomrule{}
\multicolumn{5}{}{\small continued on next page} \\
\bottomrule{} \\
}
\tablelasttail{%
\bottomrule{} \\
}

\tablecaption{Publication Distribution with the Design Space}
\label{tab: designSpace} 

\begin{supertabular}{@{}p{\dimexpr 0.20\textwidth-\tabcolsep \relax}p{\dimexpr 0.22\textwidth-2\tabcolsep \relax}p{\dimexpr 0.20\textwidth-2\tabcolsep \relax}p{\dimexpr 0.18\textwidth-2\tabcolsep \relax}p{\dimexpr 0.20\textwidth-\tabcolsep\relax }@{}}
%\begin{supertabular}{lllll}


%\endhead
Multi-Agent System (MAS) 
&
& 
&  
& 
\\  


Evolutionary Algorithm (EA) 
&  
& 
& 
& \\

Simulated Annealing (SA) 
& 
& 
& 
& \\  

Tabu search 
& 
&  
& 
& \\  

Particle Swarm Optimisation 
& 
&  
& 
& \\  

Ant Colony Algorithm 
& 
&  
& 
& \\  

Bee Colony Algorithm
&
& 
&
& \\


Neural Network (NN) 
& 
& 
& 
& \\  

Deep Deterministic Policy Gradient (DDPG) 
& 
& 
& 
& \\  

Convolutional Neural Networks (CNN)
& 
&
&
& \\

Deep Q-Network (DQN) 
& 
&  
& 
& \\  

Deep Learning
& 
&
&
& \\
Autoencoder
& 
&
&
&  \\

Random Forest (RF) 
& 
&
& 
& \\  

Quantile Regression Forest 
&  
& 
& 
& \\   

Gradient Boosting Machine (GBM) 
& 
& 
& 
& \\  

Support Vector Machine (SVM) 
& 
&  
& 
& \\  

Decision Tree 
& 
& 
& 
&  \\  

Fuzzy Logic 
&  
& 
& 
& \\  

Linear Regression 
& 
&  
& 
&  \\  

Linear Functional Regression 
& 
& 
& 
& \\  

Linear Discriminant Analysis (LDA)
&  
& 
& 
& \\

Quadratic Discriminant Analysis (QDA)
&  
& 
& 
& \\

Logistic regression
& 
& 
& 
& \\  

Binary logistic regression models 
& 
& 
&  
& \\  

Gaussian Mixture Model 
& 
& 
& 
& \\  

Bayesian Network 
& 
& 
& 
&  \\  

Recursive Bayesian estimation 
& 
&  
& 
& \\  

k-nearest neighbor (k-NN)
& 
&
&
&\\

Genetic algorithm 
&
& 
&
& \\

Hierarchical clustering
&
&
&
& \\

Dynamic Bayesian Belief Network 
&  
& 
& 
&  \\  

BIRCH 
& 
& 
&  
& \\  

DBSCAN
& 
& 
&  
& \\  

OPTIC 
& 
& 
&  
& \\  

K-means 
& 
& 
&   
& \\  

Non Negative Matrix Factorisation (NMF) 
& 
&  
& 
& \\  

A* 
& 
& 
& 
& \\  

Multi-Layer Perceptron (MLP)
& 
& 
& 
& \\ 

Deep Reinforcement Learning
& 
& 
& 
& \\ 

Recurrent neural network \& LSTM
& 
&
&
& \\

Reinforcement Learning
& 
& 
& 
& \\ 

k-nearest neighbours (kNN)
& 
& 
& 
& \\ 

Principal Component Analysis (PCA)
& 
&
&
& \\

OPTICS clustering
&
&
&
& \\

Not referenced 
&  
&  
& 
& \\  



\end{supertabular}
\end{center}
\end{document}

答案1

您有两个错误,这里缺少c列规范

  \multicolumn{5}{}{\small continued on next page}

{}以及之后的伪君子\toprule和朋友们。

运行没有错误。

\documentclass{article}
    \usepackage{supertabular, booktabs}
\newcommand{\tabitem}{~~\llap{\textbullet}~~}

\usepackage{array} %% Array m option in particular (center and sized)
\usepackage{diagbox} %% Array diagonal box
\usepackage{multirow} %for multi row in table

\begin{document}



\begin{center}
\tablefirsthead{%
\toprule
AI/ML Models & Prediction & Optimisation/ Automation & Analysis & Modelling/
Simulation \\ \midrule \\
}
\tablehead{%
%\hline\multicolumn{4}{|l|}{\small\sl continued from previous page}\\
\toprule
AI/ML Models & Prediction & Optimisation/ Automation & Analysis & Modelling/
Simulation \\ \midrule \\
}
\tabletail{%
\bottomrule
\multicolumn{5}{c}{\small continued on next page} \\
\bottomrule \\
}
\tablelasttail{%
\bottomrule \\
}

\tablecaption{Publication Distribution with the Design Space}
\label{tab: designSpace} 

\begin{supertabular}{@{}p{\dimexpr 0.20\textwidth-\tabcolsep \relax}p{\dimexpr 0.22\textwidth-2\tabcolsep \relax}p{\dimexpr 0.20\textwidth-2\tabcolsep \relax}p{\dimexpr 0.18\textwidth-2\tabcolsep \relax}p{\dimexpr 0.20\textwidth-\tabcolsep\relax }@{}}
%\begin{supertabular}{lllll}


%\endhead
Multi-Agent System (MAS) 
&
& 
&  
& 
\\  


Evolutionary Algorithm (EA) 
&  
& 
& 
& \\

Simulated Annealing (SA) 
& 
& 
& 
& \\  

Tabu search 
& 
&  
& 
& \\  

Particle Swarm Optimisation 
& 
&  
& 
& \\  

Ant Colony Algorithm 
& 
&  
& 
& \\  

Bee Colony Algorithm
&
& 
&
& \\


Neural Network (NN) 
& 
& 
& 
& \\  

Deep Deterministic Policy Gradient (DDPG) 
& 
& 
& 
& \\  

Convolutional Neural Networks (CNN)
& 
&
&
& \\

Deep Q-Network (DQN) 
& 
&  
& 
& \\  

Deep Learning
& 
&
&
& \\
Autoencoder
& 
&
&
&  \\

Random Forest (RF) 
& 
&
& 
& \\  

Quantile Regression Forest 
&  
& 
& 
& \\   

Gradient Boosting Machine (GBM) 
& 
& 
& 
& \\  

Support Vector Machine (SVM) 
& 
&  
& 
& \\  

Decision Tree 
& 
& 
& 
&  \\  

Fuzzy Logic 
&  
& 
& 
& \\  

Linear Regression 
& 
&  
& 
&  \\  

Linear Functional Regression 
& 
& 
& 
& \\  

Linear Discriminant Analysis (LDA)
&  
& 
& 
& \\

Quadratic Discriminant Analysis (QDA)
&  
& 
& 
& \\

Logistic regression
& 
& 
& 
& \\  

Binary logistic regression models 
& 
& 
&  
& \\  

Gaussian Mixture Model 
& 
& 
& 
& \\  

Bayesian Network 
& 
& 
& 
&  \\  

Recursive Bayesian estimation 
& 
&  
& 
& \\  

k-nearest neighbor (k-NN)
& 
&
&
&\\

Genetic algorithm 
&
& 
&
& \\

Hierarchical clustering
&
&
&
& \\

Dynamic Bayesian Belief Network 
&  
& 
& 
&  \\  

BIRCH 
& 
& 
&  
& \\  

DBSCAN
& 
& 
&  
& \\  

OPTIC 
& 
& 
&  
& \\  

K-means 
& 
& 
&   
& \\  

Non Negative Matrix Factorisation (NMF) 
& 
&  
& 
& \\  

A* 
& 
& 
& 
& \\  

Multi-Layer Perceptron (MLP)
& 
& 
& 
& \\ 

Deep Reinforcement Learning
& 
& 
& 
& \\ 

Recurrent neural network \& LSTM
& 
&
&
& \\

Reinforcement Learning
& 
& 
& 
& \\ 

k-nearest neighbours (kNN)
& 
& 
& 
& \\ 

Principal Component Analysis (PCA)
& 
&
&
& \\

OPTICS clustering
&
&
&
& \\

Not referenced 
&  
&  
& 
& \\  



\end{supertabular}
\end{center}
\end{document}

相关内容