我是初学者。过去两天我一直在尝试制作一张表格,但一直没有成功。我需要这张表格方面的帮助。
我的一些尝试
\begin{tabular}{|c|c|c|c|c|}
\hline
$t$ & $y$ & $y$ \text{in terms of} $y_0[=(-\frac 12)
g\tau^2]$ &\text{Distance traversed in successive intervals}& \text{Ratio of distances traversed} \
\hline
$0$ & $0$ & $0$ & $:$ & $:$ \
$ \tau$ & $-(\frac 12) g \tau^2$ & $y_0$ & $y_0$ & $1$\
$2 \tau$ & $-4(\frac 12) g \tau^2$ & $4y_0$ & $3y_0$ & $3$ \
$3 \tau$ & $-9(\frac 12) g \tau^2$ & $9y_0$ & $5y_0$ & $5$ \
$4\tau$ & $-16(\frac 12) g \tau^2$ & $16y_0$ &$7y_0$ & $7$ \
$5 \tau$ & $-25(\frac 12) g \tau^2$ & $25y_0$ & $9y_0$ & $9$ \
$6 \tau$ & $-36(\frac 12) g \tau^2$& $36y_0$ & $11y_0$ & $11$
\end{tabular}
。
\begin{tabular}{|c|c|c|c|c|}
\hline
$t$ & $y$ & $y$ \text{in terms of} $y_0[=\left(-\frac 12\right) g\tau^2]$ &\text{Distance traversed in successive intervals}& \text{Ratio of distances traversed} \
\hline
$0$ & $0$ & $0$ & $:$ & $:$ \
$ \tau$ & $-\left(\frac 12\right) g \tau^2$ & $y_0$ & $y_0$ & $1$\
$2 \tau$ & $-4\left(\frac 12\right) g \tau^2$ & $4y_0$ & $3y_0$ & $3$ \
$3 \tau$ & $-9\left(\frac 12\right) g \tau^2$ & $9y_0$ & $5y_0$ & $5$ \
$4\tau$ & $-16\left(\frac 12\right) g \tau^2$ & $16y_0$ &$7y_0$ & $7$ \
$5 \tau$ & $-25\left(\frac 12\right) g \tau^2$ & $25y_0$ & $9y_0$ & $9$ \
$6 \tau$ & $-36\left(\frac 12\right) g \tau^2$& $36y_0$ & $11y_0$ & $11$ \
\hline
\end{tabular}
。
\begin{tabular}{|c|c|c|c|c|}
\hline
$t$ & $y$ & $y$ \text{in terms of} $y_0[=\left(-\frac 12\right) g\tau^2]$ &\text{Distance traversed in successive intervals}& \text{Ratio of distances traversed} \\
\hline
$0$ & $0$ & $0$ & $\:$ & $\:$ \\
$ \tau$ & $-\left(\frac 12\right) g \tau^2$ & $y_0$ & $y_0$ & $1$\\
$2 \tau$ & $-4\left(\frac 12\right) g \tau^2$ & $4y_0$ & $3y_0$ & $3$ \\
$3 \tau$ & $-9\left(\frac 12\right) g \tau^2$ & $9y_0$ & $5y_0$ & $5$ \\
$4\tau$ & $-16\left(\frac 12\right) g \tau^2$ & $16y_0$ &$7y_0$ & $7$ \\
$5 \tau$ & $-25\left(\frac 12\right) g \tau^2$ & $25y_0$ & $9y_0$ & $9$ \\
$6 \tau$ & $-36\left(\frac 12\right) g \tau^2$& $36y_0$ & $11y_0$ & $11$ \\
\hline
\end{tabular}
答案1
以下是一种方法:
\documentclass[12pt]{article}
%\usepackage{amsmath} % in case you need it
\begin{document}
\begin{tabular}{|l|l|p{2cm}|p{2.5cm}|p{3cm}|} % p: col-width
\hline
$t$ &
$y$ &
{$y$ in terms of $y_0=-\frac{1}{2} g \tau^2$} &
{Distance traversed in successive intervals} & % {} for readability
{Ratio of distances traversed}\\% \\ ends the row
\hline % just two lines as an example
$0$ &$0$ &$0$ &$0$ &$0$\\ % digits in math-font
$6 \tau$ &
$-3 (\frac{1}{2})g \tau^2$ & % watch braces ;-)
{$36 y_0$} & {$11 y_0$} &
{$11$}\\
\hline
\end{tabular}
\end{document}
看https://en.wikibooks.org/wiki/LaTeX/Tables#The_tabular_environment了解有关tabular
环境的更多详细信息。
结果:
除非你已经知道,否则这个值得花几个小时阅读和扫描:https://en.wikibooks.org/wiki/LaTeX。
在这里可以找到更多表格设计的替代方案:https://ctan.org/topic/table?lang=en. 也许你会喜欢nicematrix
https://ctan.org/pkg/nicematrix?
祝您与 Latex 的旅程愉快 :)
答案2
不清楚为什么您的代码片段有三个连续相同的表。无论如何,建议的解决方案是只考虑一个:
在上面表格的代码中,我们考虑了在数学环境中嵌套的tblr
包中定义的表环境tabularray
。这样就消除了$
表体中的所有内容:
编辑:
在 MWE 中现在被认为是tabularray
2021N 版本。
\documentclass{article}
\usepackage{tabularray}
\begin{document}
\[
\begin{tblr}{colspec = { l l X[l] X[1.1,l] X[l] },
vlines,
hline{1,2,Z} = {1pt}, % <---
colsep=4pt,
}
t & y & y $ in terms of $ y_0\ [=(-\frac{1}{2})g\tau^2]
& $in terms of successive intervals$~
& $Ratio of distances traversed$~ \\
0 & 0 & 0 & & \\
\tau & -(\frac{1}{2}) g \tau^2
& y_0 & y_0 & 1 \\
2\tau & -4(\frac{1}{2}) g \tau^2
& 4y_0 & 3y_0 & 3 \\
3\tau & -9(\frac{1}{2}) g \tau^2
& 9y_0 & 5y_0 & 5 \\
4\tau & -16(\frac{1}{2}) g \tau^2
& 16y_0 &7y_0 & 7 \\
5\tau & -25(\frac{1}{2}) g \tau^2
& 25y_0 & 9y_0 & 9 \\
6\tau & -36(\frac{1}{2}) g \tau^2
& 36y_0 & 11y_0 & 11 \\
\end{tblr}
\]
\end{document}
答案3
要在列标题中创建多行,可以使用包\thead
中的命令。makecell
\documentclass{article}
\usepackage{makecell}
\usepackage{amsmath}
\renewcommand\theadalign{tl} %for top left alignment
\begin{document}
\begin{tabular}{|l|l|l|l|l|}
\hline
\thead{$t$} & \thead{$y$}
& \thead{$y$ in terms of\\ $y_0[=\left(-\frac 12\right) g\tau^2]$}
& \thead{Distance \\traversed in \\successive \\intervals}
& \thead{Ratio of \\distances \\traversed} \\
\hline
$0$ & $0$ & $0$ & $\:$ & $\:$ \\
$ \tau$ & $-\left(\frac 12\right) g \tau^2$ & $y_0$ & $y_0$ & $1$ \\
$2 \tau$ & $-4\left(\frac 12\right) g \tau^2$ & $4y_0$ & $3y_0$ & $3$ \\
$3 \tau$ & $-9\left(\frac 12\right) g \tau^2$ & $9y_0$ & $5y_0$ & $5$ \\
$4\tau$ & $-16\left(\frac 12\right) g \tau^2$ & $16y_0$ &$7y_0$ & $7$ \\
$5 \tau$ & $-25\left(\frac 12\right) g \tau^2$ & $25y_0$ & $9y_0$ & $9$ \\
$6 \tau$ & $-36\left(\frac 12\right) g \tau^2$& $36y_0$ & $11y_0$ & $11$ \\
\hline
\end{tabular}
\end{document}