答案1
拥有合适的环境:
\documentclass{article}
\usepackage{amsmath,amssymb}
\newcommand{\RR}{\mathbb{R}}
\renewcommand{\vec}[1]{\mathbf{#1}}
\newcommand{\base}[1]{\mathcal{#1}}
\newcounter{problem}
\newlength{\problemtagwidth}
\newlength{\problemtagsep}
\setlength{\problemtagwidth}{1.2cm}
\setlength{\problemtagsep}{0.3cm}
\newenvironment{problem}[1] % #1 = points
{%
% ensure to be able to add some vertical space
\par\addvspace{\topsep}
% typeset the tag as a smashed top aligned parbox
% inside a zero width box that protrudes left
\setlength{\leftskip}{\problemtagwidth}%
\addtolength{\leftskip}{\problemtagsep}%
\everydisplay\expandafter{\the\everydisplay\setlength{\displayindent}{0.5\leftskip}}%
\noindent\stepcounter{problem}%
\sbox0{%
\parbox[t]{\problemtagwidth}{%
\raggedleft
{\large\bfseries\theproblem}\par
\vspace{2pt}
\hrule
\vspace{2pt}
{\sffamily pt #1}
}%
}%
\makebox[0pt][r]{\smash{\usebox0}\hspace{\problemtagsep}}%
\ignorespaces
}
{\par}
\newenvironment{solution}
{\par\noindent\textit{Solution}.\ \ignorespaces}
{\par\addvspace{\topsep}}
\begin{document}
\begin{problem}{20}
Let $C=[c_{ij}]$ be an $n\times n$ real matrix and
$\base{B}=\{\vec{v}_1,\dots,\vec{v}_n\}$ be a basis of $\RR^n$.
Let $\base{S}=\{\vec{e}_1,\dots,\vec{e}_n\}$ be the standard basis
for $\RR^n$ and let $T\colon\RR^n\to\RR^n$ be a linear operator
defined by
\[
T(\vec{v}_i)=c_{1i}\vec{v}_1+c_{2i}\vec{v}_2+\dots+c_{1n}\vec{v}_n.
\]
Show that the standard matrix for $T$ is $CA$, where
\[
A=[\vec{v}_1\mid\vec{v}_2\mid\dotsb\mid\vec{v}_n]^{-1}.
\]
\end{problem}
\begin{solution}
This is very easy.
\end{solution}
\end{document}
答案2
这可以通过 Latex 环境实现list
。以下是简单示例
\documentclass[11pt,a4paper]{article}
\hoffset=-1in
\textwidth=170mm
\begin{document}
\newcounter{cnt}
\def\itemblock{%
\stepcounter{cnt}%
\parbox[t][0pt][t]{40pt}{%
\hbox to \hsize {\hss \arabic{cnt}}%
\vskip 3pt\hrule \vskip 3pt%
\hbox to \hsize{\hss\textsf{20 pt}}%
}%
}%
\begin{list}{\itemblock}{\leftmargin=60pt\labelwidth=40pt\labelsep=20pt}
\item Let $C=[c_{ij}]$ be an $n\times m$ real matrix and $B=\{v_1, v_2, \ldots, v_3\}$ be a basis for $R^n$. Let $S=\{e1,e2, \ldots, e3\}$ be standard basis for $R^n$ and let $T: R^n \longrightarrow R^n$ be a linear operator defined by.
$$T(v_i) = $$
Show
\item Let $C=[c_{ij}]$ be an $n\times m$ real matrix and $B=\{v_1, v_2, \ldots, v_3\}$ be a basis for $R^n$. Let $S=\{e1,e2, \ldots, e3\}$ be standard basis for $R^n$ and let $T: R^n \longrightarrow R^n$ be a linear operator defined by.
$$T(v_i) = $$
Show
\end{list}
\end{document}