答案1
\documentclass[tikz,border=1 cm]{standalone}
\usepackage{pgfplots}
\pgfplotsset{compat=1.18}
\usepgfplotslibrary{patchplots}
\begin{document}
\begin{tikzpicture}[declare function={%
f(\x,\y)=100-(\x-20)^2-(\y)^2;
rndx(\t,\random)=21+\random+2*sin(720*\t)+\random;
rndy(\t,\random)=9.3-7*\t;
}]
\begin{axis}[
view={50}{30},
colormap/cool,
axis lines=center,
xmin=0, xmax=50,
ymin=0, ymax=30,
zmin=0, zmax=120,
y dir=reverse,
ticks=none,
]
\addplot3[
mesh, patch refines=1,
domain=9:31, samples=17,
domain y=0:10, samples y=11,
z filter/.expression={z<-15?nan:z}, unbounded coords=jump,
ultra thin,
] {(f(x,y)};
\addplot3[densely dashed, domain=20:10,samples y=1, smooth] {(f(x,0)};
\addplot3[domain=20:30, samples y=1, smooth] {(f(x,0)};
\addplot3[densely dashed, variable=\t, domain=-90:-30, smooth, samples y=1] ({10*sin(t)+20}, {10*cos(t)}, 0);
\addplot3[variable=\t, domain=-30:90, smooth, samples y=1] ({10*sin(t)+20}, {10*cos(t)}, 0);
\addplot3[variable=\t, domain=0:10, samples y=1] ({20+t*sin(-30)},{t*cos(-30)},{f({20+t*sin(-30)},{t*cos(-30)})});
\addplot3[red, variable=\t, domain=0:1, samples=30, samples y=1, point meta=rnd] ( {rndx(t,meta)}, {rndy(t,meta)}, {f({rndx(t,meta)}, {rndy(t,meta)})} );
\addplot3[magenta, variable=\t, domain=0:1, samples=30, samples y=1, point meta=rnd] ( {rndx(t,meta)}, {rndy(t,meta)}, {f({rndx(t,meta)}, {rndy(t,meta)})} );
\addplot3[blue, variable=\t, domain=0:1, samples=30, samples y=1, point meta=rnd] ( {rndx(t,meta)}, {rndy(t,meta)}, {f({rndx(t,meta)}, {rndy(t,meta)})} );
\end{axis}
\end{tikzpicture}
\end{document}
答案2
一些初步步骤...如果有人已经看到是否有可能朝这个方向发展,请注明。
\documentclass[tikz,border=3.14mm]{standalone}
\usepackage{pgfplots}
\pgfplotsset{compat=1.16}
\begin{document}
\begin{tikzpicture}[scale=2,declare function={f(\x,\y)=-1*((\x*\x)+((\y*\y+100)));}]
\begin{axis}[
title={Título qualquer},
xlabel=$\mu_2$, ylabel=$\mu_1$,
small,
x dir=reverse
]
\addplot3[
surf,
domain=-40:40,
domain y=-30:30,
]
{(f(x,y)};
\addplot3[mesh,domain=0:10,color=green] ({2*(x+10)},{x+10}, {(f(2*(x+10),x+10)});
\addplot3[mesh,domain=0:10,color=black] ({2*(10-x)},{x}, {(f(2*(10-x),x)});
\end{axis}
\end{tikzpicture}
\end{document}
现在的问题是让表面看起来像那样,并使用 Anton Mn 在评论中指出的内容。