在伯顿的《数学史》中,介绍了以下象形文字图画:
对于我计划写一些有关埃及算术的东西,我想使用类似的象形文字——它们显然是手绘的。
Latex 是否有可能近似这些图形(如果可能的话,厚度也差不多)?
我查看了该hieroglf
软件包,但并未在所有情况下找到与 Burton 书中的图纸相似的图纸。此外,我在文档中找不到任何与 10,000,000(即推测的“旭日”)有关的内容。
例如,
这是用代码生成的
\documentclass{article}
\usepackage{hieroglf}
\begin{document}
\Huge
\pmglyph{\Hone \hskip 15pt \Hten \hskip 15pt \Hhundred \hskip 15pt, \Hthousand \hskip 15pt \Hslash \hskip 15pt \HCthousand \hskip 15pt \Hmillion \hskip 15pt} rising sun?
\end{document}
通过搜索此网站,我发现了制作象形文字的其他方法,这些方法需要 Xelatex 或 LuaLatex——这对我来说都不是一个选择。
问:八、九个伯顿象形文字是如何产生的?pdf文件是否具有与所展示的图片相似的手绘效果和厚度(如果可能的话)?
谢谢。
答案1
答案2
显然,可以(非常有耐心)对每个象形文字进行“描摹”。为此,我使用 TikzEdt 和所述技术这里.以下是一些结果。
1000:
\documentclass{standalone}
\usepackage{tikz}
\begin{document}
\begin{tikzpicture}
%\node{\includegraphics{hier}};
\fill[even odd rule] plot[smooth, tension=.7]
coordinates {(-5.4425,0.5292) (-5.5074,0.3847)
(-5.4838,0.1842) (-5.4248,0.0603) (-5.3599,-0.0223)
(-5.2685,-0.0577) (-5.2567,-0.1638) (-5.2449,-0.2199)
(-5.2685,-0.3024) (-5.3304,-0.2818) (-5.41,-0.2582)
(-5.4985,-0.2553) (-5.5663,-0.273) (-5.6519,-0.3172)
(-5.646,-0.3791) (-5.5958,-0.4057) (-5.5486,-0.3732)
(-5.4985,-0.3526) (-5.4336,-0.3614) (-5.3776,-0.3909)
(-5.3363,-0.4352) (-5.3422,-0.4824) (-5.4041,-0.5177)
(-5.4484,-0.5649) (-5.4926,-0.6269) (-5.5309,-0.7035)
(-5.5368,-0.7743) (-5.5457,-0.8392) (-5.5575,-0.8775)
(-5.5457,-0.9454) (-5.4661,-0.9601) (-5.3658,-0.9719)
(-5.2655,-0.9926) (-5.1416,-1.0073) (-5.0414,-1.0103)
(-4.9765,-0.9896) (-4.9676,-0.9041) (-4.95,-0.8009)
(-4.9647,-0.7006) (-5.0089,-0.6239) (-5.0827,-0.5354)
(-5.1299,-0.5) (-5.1358,-0.444) (-5.1004,-0.3939)
(-5.0532,-0.3703) (-4.9853,-0.3585) (-4.9146,-0.3703)
(-4.8467,-0.3821) (-4.8113,-0.3496) (-4.8202,-0.3142)
(-4.8408,-0.2877) (-4.8821,-0.27) (-4.9441,-0.27)
(-5.0001,-0.27) (-5.0561,-0.273) (-5.0945,-0.2965)
(-5.121,-0.3231) (-5.1299,-0.2759) (-5.1328,-0.2317)
(-5.1416,-0.1727) (-5.1534,-0.1255) (-5.1711,-0.0783)
(-5.1328,-0.04) (-5.0738,0.0161) (-5.0207,0.0721)
(-4.9706,0.1399) (-4.9558,0.2255) (-4.9588,0.3287)
(-4.9706,0.4083) (-4.9971,0.4673) (-5.0237,0.5145)
(-5.0797,0.5587) (-5.1299,0.5292) (-5.1623,0.482)
(-5.2065,0.4437) (-5.2419,0.4054) (-5.2714,0.429)
(-5.3039,0.4555) (-5.3422,0.4791) (-5.3746,0.5086)}-- cycle
plot[smooth, tension=.7] coordinates {(-5.2356,0.247)
(-5.2958,0.2794) (-5.3329,0.3397) (-5.3793,0.3536)
(-5.3932,0.2794) (-5.3793,0.2099) (-5.3422,0.1404)
(-5.3097,0.0802) (-5.2449,0.0385) (-5.1661,0.0663)
(-5.1151,0.1126) (-5.0734,0.1868) (-5.0595,0.2516)
(-5.0549,0.3119) (-5.0734,0.3536) (-5.1151,0.3351)
(-5.1429,0.2887) (-5.1893,0.2609)} -- cycle
plot[smooth, tension=.7] coordinates {(-5.2402,-0.5779)
(-5.3051,-0.6011) (-5.3422,-0.6474) (-5.3839,-0.6937)
(-5.4163,-0.7494) (-5.421,-0.805) (-5.3839,-0.8467)
(-5.3144,-0.8745) (-5.2356,-0.8977) (-5.1568,-0.8977)
(-5.0966,-0.8745) (-5.078,-0.8003) (-5.078,-0.7494)
(-5.1012,-0.6937) (-5.1336,-0.6474) (-5.18,-0.6057)} -- cycle;
\end{tikzpicture}
\end{document}
100000:
\documentclass{standalone}
\usepackage{tikz}
\begin{document}
\begin{tikzpicture}
%\node{\includegraphics{hier}};
\fill[even odd rule] plot[smooth, tension=.7] coordinates {(2.6984,-1.3383)
(2.8158,-1.2395) (2.8868,-1.1499) (2.9331,-1.0728)
(2.9701,-0.9647) (3.0072,-0.8628) (3.0195,-0.7363)
(3.038,-0.6066) (3.0195,-0.4615) (3.0041,-0.3473)
(2.9763,-0.267) (2.9176,-0.1589) (2.859,-0.0879)
(2.7941,-0.0293) (2.7108,0.0325) (2.6367,0.088)
(2.5657,0.1251) (2.4607,0.1498) (2.3311,0.1436)
(2.2354,0.1374) (2.1613,0.122) (2.0933,0.0973)
(2.0285,0.0633) (1.976,0.0356) (1.9174,-0.0077)
(1.8525,-0.0725) (1.8031,-0.1312) (1.7692,-0.1867)
(1.7445,-0.2485) (1.726,-0.3257) (1.7321,-0.4121)
(1.7507,-0.4862) (1.7877,-0.5603) (1.8217,-0.622)
(1.868,-0.6714) (1.9143,-0.7208) (1.9915,-0.7486)
(2.0656,-0.7609) (2.1458,-0.7795) (2.2415,-0.7856)
(2.3064,-0.7826) (2.365,-0.7486) (2.4052,-0.7146)
(2.4638,-0.6838) (2.5286,-0.6776) (2.5935,-0.693)
(2.6521,-0.7332) (2.6984,-0.8073) (2.7077,-0.8721)
(2.7108,-0.9338) (2.7139,-1.0048) (2.717,-1.0666)
(2.7108,-1.1129) (2.7077,-1.1592) (2.683,-1.1993)
(2.6676,-1.2302) (2.6737,-1.2827)} --cycle
plot[smooth, tension=.7] coordinates {(2.8652,-0.8628)
(2.896,-0.835) (2.9145,-0.7856) (2.9207,-0.7332)
(2.9207,-0.6899) (2.93,-0.6344) (2.9269,-0.585)
(2.9207,-0.5263) (2.9176,-0.48) (2.9084,-0.4275)
(2.8991,-0.3874) (2.8775,-0.3534) (2.8374,-0.301)
(2.8127,-0.267) (2.7725,-0.2269) (2.7262,-0.1806)
(2.7108,-0.1466) (2.6737,-0.1126) (2.646,-0.0787)
(2.5997,-0.054) (2.5472,-0.0262) (2.4947,-0.0046)
(2.4391,0.0016) (2.3774,0.0016) (2.3156,-0.0015)
(2.2693,-0.0015) (2.2137,-0.0077) (2.1705,-0.02)
(2.1211,-0.0416) (2.0717,-0.054) (2.0409,-0.0787)
(2.0007,-0.1003) (1.9606,-0.1281) (1.9266,-0.1651)
(1.8958,-0.2052) (1.8742,-0.2454) (1.8649,-0.2948)
(1.8649,-0.3565) (1.8618,-0.4152) (1.8927,-0.4677)
(1.9328,-0.5109) (1.976,-0.5541) (2.0223,-0.6004)
(2.0563,-0.6282) (2.115,-0.6529) (2.1736,-0.6375)
(2.2261,-0.622) (2.2662,-0.6004) (2.3125,-0.5726)
(2.3558,-0.5418) (2.4021,-0.5201) (2.4329,-0.4954)
(2.47,-0.4677) (2.5101,-0.4677) (2.5564,-0.48)
(2.5873,-0.514) (2.6367,-0.5418) (2.683,-0.5757)
(2.717,-0.6128) (2.754,-0.6498) (2.7787,-0.6869)
(2.8096,-0.7239) (2.8312,-0.764) (2.8435,-0.8103)} -- cycle
plot[smooth, tension=.7] coordinates {(2.2261,-0.3503)
(2.2168,-0.304) (2.1891,-0.267) (2.1582,-0.2516) (2.1304,-0.2454)
(2.1057,-0.2763) (2.0903,-0.304) (2.0748,-0.3411) (2.0656,-0.375)
(2.0748,-0.409) (2.0995,-0.4399) (2.1397,-0.4553) (2.1705,-0.443)
(2.2014,-0.4183) (2.2168,-0.3843)} --cycle;
\end{tikzpicture}
\end{document}
1000000:
\documentclass{standalone}
\usepackage{tikz}
\begin{document}
\begin{tikzpicture}
%\node{\includegraphics{hier}};
\fill[even odd rule] plot[smooth cycle, tension=.7] coordinates {(5.4314,0.0538)
(5.3649,0.0304) (5.3141,0.0069) (5.2594,-0.0205)
(5.2242,-0.0556) (5.1851,-0.0908) (5.146,-0.1416)
(5.1186,-0.1885) (5.1147,-0.2433) (5.1147,-0.3215)
(5.1186,-0.3801) (5.1147,-0.427) (5.0874,-0.4661)
(5.0522,-0.5013) (5.0053,-0.5169) (4.9545,-0.5364)
(4.9076,-0.5404) (4.8528,-0.5404) (4.8059,-0.5286)
(4.7746,-0.5169) (4.7277,-0.4817) (4.6926,-0.4622)
(4.6652,-0.4153) (4.6535,-0.3605) (4.6378,-0.2902)
(4.6339,-0.2276) (4.6378,-0.1455) (4.6417,-0.083)
(4.6417,-0.0322) (4.6456,0.0108) (4.6456,0.0577)
(4.673,0.0929) (4.7043,0.1203) (4.7395,0.1476)
(4.7707,0.175) (4.7786,0.2219) (4.7277,0.2336)
(4.6965,0.2258) (4.673,0.2102) (4.6456,0.1828)
(4.6222,0.1906) (4.6066,0.218) (4.587,0.2414)
(4.5753,0.2649) (4.5596,0.2923) (4.5284,0.3001)
(4.4971,0.2962) (4.4776,0.2649) (4.4776,0.2336)
(4.4893,0.1867) (4.5127,0.1437) (4.5088,0.089)
(4.5049,0.046) (4.501,-0.0087) (4.5166,-0.083)
(4.5284,-0.1495) (4.544,-0.212) (4.544,-0.2824)
(4.544,-0.3488) (4.5596,-0.3996) (4.5714,-0.4465)
(4.5909,-0.4856) (4.6183,-0.513) (4.6496,-0.5521)
(4.6808,-0.5794) (4.716,-0.6029) (4.7512,-0.6146)
(4.7825,-0.6264) (4.8294,-0.642) (4.8841,-0.6498)
(4.9427,-0.6498) (4.9935,-0.6537) (5.0365,-0.6576)
(5.0795,-0.6733) (5.1147,-0.7163) (5.1421,-0.7632)
(5.1616,-0.8101) (5.1773,-0.8609) (5.1851,-0.9234)
(5.1929,-0.9821) (5.1929,-1.0329) (5.2046,-1.1033)
(5.2007,-1.1619) (5.2046,-1.2323) (5.2085,-1.287)
(5.2125,-1.3495) (5.2085,-1.3964) (5.189,-1.4394)
(5.1695,-1.4629) (5.1343,-1.4707) (5.103,-1.4629)
(5.0795,-1.4473) (5.0561,-1.4199) (5.0326,-1.4003)
(5.0053,-1.373) (4.9779,-1.3456) (4.9506,-1.3183)
(4.9076,-1.2948) (4.8724,-1.2753) (4.8098,-1.2401)
(4.7668,-1.2557) (4.7316,-1.2909) (4.7082,-1.3378)
(4.6847,-1.3886) (4.673,-1.4394) (4.6535,-1.4942)
(4.6456,-1.5684) (4.6456,-1.6271) (4.6496,-1.6974)
(4.6456,-1.76) (4.6456,-1.8069) (4.6417,-1.8616)
(4.6183,-1.8968) (4.5948,-1.9242) (4.5753,-1.975)
(4.5518,-2.0219) (4.5362,-2.0727) (4.5401,-2.1274)
(4.587,-2.147) (4.6339,-2.1665) (4.6926,-2.1782)
(4.7434,-2.19) (4.802,-2.1978) (4.8567,-2.1978)
(4.9036,-2.1978) (4.9584,-2.1939) (5.0092,-2.1861)
(5.0678,-2.1782) (5.1147,-2.1782) (5.1577,-2.1743)
(5.2164,-2.1626) (5.2789,-2.1587) (5.3336,-2.1587)
(5.3884,-2.1509) (5.4392,-2.1548) (5.49,-2.1431)
(5.5486,-2.1313) (5.5955,-2.1118) (5.6229,-2.0883)
(5.6659,-2.0571) (5.705,-2.0258) (5.7206,-1.9867)
(5.7324,-1.9476) (5.7402,-1.9046) (5.7441,-1.8538)
(5.7519,-1.7952) (5.7441,-1.7482) (5.7363,-1.6974)
(5.7324,-1.6544) (5.7245,-1.6075) (5.7128,-1.5411)
(5.7011,-1.4707) (5.6776,-1.4199) (5.6659,-1.373)
(5.6581,-1.3143) (5.662,-1.2596) (5.6581,-1.201)
(5.6542,-1.1463) (5.6542,-1.0759) (5.6503,-1.0212)
(5.6542,-0.9743) (5.6659,-0.9234) (5.6737,-0.8765)
(5.6776,-0.8374) (5.7011,-0.7984) (5.7167,-0.7671)
(5.7519,-0.728) (5.7949,-0.6928) (5.834,-0.6615)
(5.8731,-0.6303) (5.9122,-0.6107) (5.9591,-0.5873)
(6.0099,-0.5599) (6.0607,-0.5443) (6.1076,-0.5208)
(6.1545,-0.4817) (6.1936,-0.4544) (6.2132,-0.4075)
(6.2288,-0.3566) (6.2366,-0.3019) (6.2523,-0.2472)
(6.264,-0.2042) (6.2679,-0.1612) (6.2835,-0.126)
(6.2913,-0.0791) (6.307,-0.04) (6.307,0.0186)
(6.307,0.0655) (6.307,0.1085) (6.3031,0.1554)
(6.3265,0.1867) (6.3383,0.2258) (6.3578,0.2571)
(6.3734,0.2962) (6.4008,0.3235) (6.3969,0.3587)
(6.3695,0.39) (6.3383,0.3978) (6.3109,0.3822)
(6.2913,0.3509) (6.2796,0.3157) (6.2483,0.2805)
(6.2093,0.2649) (6.1741,0.2688) (6.1467,0.2962)
(6.1076,0.3001) (6.0646,0.2923) (6.0568,0.2649)
(6.0724,0.2336) (6.0959,0.2063) (6.1311,0.1828)
(6.1702,0.1515) (6.1936,0.1242) (6.1975,0.0695)
(6.2014,0.0304) (6.1975,-0.0165) (6.1936,-0.0674)
(6.1819,-0.1104) (6.1702,-0.1612) (6.1663,-0.2081)
(6.1584,-0.2472) (6.1389,-0.2863) (6.1389,-0.3293)
(6.1233,-0.3684) (6.0881,-0.3957) (6.0646,-0.427)
(6.0255,-0.4387) (5.9825,-0.4465) (5.9434,-0.4544)
(5.9317,-0.4778) (5.8848,-0.4778) (5.8457,-0.4778)
(5.8144,-0.4778) (5.7871,-0.4817) (5.748,-0.4817)
(5.7128,-0.4817) (5.6776,-0.47) (5.6503,-0.4505)
(5.6346,-0.427) (5.6307,-0.3957) (5.6229,-0.3684)
(5.619,-0.341) (5.6424,-0.3175) (5.662,-0.2941)
(5.6815,-0.2628) (5.705,-0.2315) (5.7284,-0.1925)
(5.7402,-0.1573) (5.748,-0.1182) (5.748,-0.0752)
(5.7363,-0.04) (5.7206,-0.0126) (5.6933,0.0069)
(5.662,0.0265) (5.6229,0.0382) (5.576,0.0499)
(5.5408,0.0499) (5.5017,0.0538)}
plot[smooth cycle, tension=.7] coordinates {(5.4705,-0.0635)
(5.4079,-0.083) (5.3571,-0.0986) (5.3141,-0.1221)
(5.2789,-0.1534) (5.2476,-0.1885) (5.2281,-0.2315)
(5.232,-0.2824) (5.2437,-0.3175) (5.2711,-0.341)
(5.3102,-0.341) (5.3454,-0.3332) (5.3923,-0.3175)
(5.4235,-0.3019) (5.4705,-0.2785) (5.5056,-0.2589)
(5.5486,-0.2276) (5.5799,-0.2003) (5.6073,-0.1768)
(5.619,-0.1416) (5.6229,-0.1143) (5.6034,-0.0947)
(5.5955,-0.0791) (5.5643,-0.0635) (5.5252,-0.0595)}
plot[smooth cycle, tension=.7] coordinates {(4.8294,-1.3925)
(4.7903,-1.4199) (4.7864,-1.4668) (4.7746,-1.5137)
(4.759,-1.5606) (4.7551,-1.6075) (4.7551,-1.6583)
(4.7629,-1.7013) (4.7786,-1.7482) (4.7981,-1.7795)
(4.8411,-1.7639) (4.8724,-1.7365) (4.9154,-1.7092)
(4.9584,-1.6818) (4.9935,-1.6583) (5.0326,-1.6271)
(5.0561,-1.5997) (5.0326,-1.5723) (5.0092,-1.5411)
(4.9857,-1.5098) (4.9506,-1.4707) (4.931,-1.459)
(4.9115,-1.4355) (4.8802,-1.416)}
plot[smooth cycle, tension=.7] coordinates {(5.4822,-0.4387)
(5.4392,-0.4544) (5.4001,-0.4739) (5.3571,-0.4817)
(5.318,-0.4934) (5.2867,-0.5169) (5.2594,-0.5443)
(5.2281,-0.5716) (5.2007,-0.6029) (5.2242,-0.6381)
(5.2359,-0.6733) (5.2476,-0.7163) (5.2672,-0.7632)
(5.2867,-0.8062) (5.2985,-0.857) (5.3063,-0.9117)
(5.3102,-0.9508) (5.3102,-1.0016) (5.3102,-1.0407)
(5.3102,-1.0876) (5.3102,-1.1384) (5.318,-1.1893)
(5.3063,-1.2244) (5.3024,-1.2753) (5.3063,-1.33)
(5.3063,-1.3808) (5.3063,-1.4238) (5.3063,-1.4707)
(5.3063,-1.5176) (5.3063,-1.5606) (5.2867,-1.5958)
(5.2672,-1.6271) (5.2398,-1.6505) (5.2125,-1.6818)
(5.1851,-1.7013) (5.1499,-1.7287) (5.1225,-1.7482)
(5.0913,-1.7678) (5.06,-1.7952) (5.0248,-1.8108)
(4.9896,-1.8382) (4.9506,-1.8616) (4.9154,-1.8929)
(4.8724,-1.9124) (4.8333,-1.9359) (4.8137,-1.9672)
(4.7825,-2.0102) (4.802,-2.0297) (4.845,-2.0532)
(4.888,-2.0492) (4.9388,-2.0414) (4.9857,-2.0375)
(5.0326,-2.0297) (5.0795,-2.0219) (5.1304,-2.018)
(5.1968,-2.018) (5.2515,-2.0141) (5.3102,-2.0141)
(5.3649,-1.9984) (5.447,-1.9906) (5.5017,-1.9828)
(5.5564,-1.9632) (5.5916,-1.9398) (5.6229,-1.9085)
(5.6268,-1.8655) (5.6268,-1.8264) (5.619,-1.7952)
(5.619,-1.76) (5.619,-1.7131) (5.6034,-1.674)
(5.5955,-1.6427) (5.5916,-1.5997) (5.5955,-1.5606)
(5.5877,-1.5254) (5.5799,-1.4981) (5.5682,-1.459)
(5.5682,-1.4082) (5.5643,-1.3691) (5.5682,-1.3143)
(5.5721,-1.2557) (5.5721,-1.2166) (5.5682,-1.1814)
(5.5682,-1.1306) (5.5604,-1.0915) (5.5525,-1.0368)
(5.5486,-0.986) (5.5604,-0.9352) (5.5643,-0.8922)
(5.5721,-0.8374) (5.5955,-0.7984) (5.5994,-0.7475)
(5.6229,-0.7045) (5.6346,-0.6654) (5.6385,-0.6342)
(5.6229,-0.5951) (5.5994,-0.5716) (5.5799,-0.5599)
(5.5525,-0.5325) (5.533,-0.5052) (5.5174,-0.4778)
(5.5174,-0.4465)};
\end{tikzpicture}
\end{document}