请教一个关于表格格式的问题

请教一个关于表格格式的问题

我的任务是获取附件。代码也已附加。任何帮助都将不胜感激。

在此处输入图片描述

 \begin{minipage}[]{0.5\textwidth}
\textbf{Step}
\begin{enumerate}
    \item $a=b$
    \item $a^2=ab$
    \item $a^2-b^2=ab-b^2$
    \item $(a-b)(a+b)=b(a-b)$
    \item $a+b=b$
    \item $2b=b$
    \item 2=1
\end{enumerate}
\end{minipage}
\begin{minipage}[]{0.5\textwidth}
\textbf{Reason} \\
Given\\
Multiply both sides of (1) by $a$\\
Substract $b^2$ from both sides of (2)\\
Factor both sides of (3)\\
Divide both sides of (4) by $a-b$\\
Replace $a$ by $b$ in (5) because $a=b$ and simplify\\
Divide both sides of (6) by $b$
\end{minipage}

答案1

有以下可能性:

\documentclass[12pt]{article}
\newcounter{aux}
\newcommand*{\al}{\stepcounter{aux}\theaux.\ }
\pagestyle{empty}
\begin{document}
\begin{center}
  \renewcommand*{\arraystretch}{1.2}
  \begin{tabular}{p{.46\textwidth}p{.46\textwidth}}
    \textbf{Step}&\textbf{Reason}\\
    \al $a=b$&Given\\
    \al $a^2=ab$&Multiply both sides of (1) by $a$\\
    \al $a^2-b^2=ab-b^2$&Subtract $b^2$ from both sides of (2)\\
    \al $(a-b)(a+b)=b(a-b)$&Factor both sides of (3)\\
    \al $a+b=b$&Divide both sides of (4) by $a-b$\\
    \al $2b=b$&Replace $a$ by $b$ in (5) because $a=b$ and simplify\\
    \al $2=1$&Divide both sides of (6) by $b$
  \end{tabular}
\end{center}
\end{document}

它会给你这个:

在此处输入图片描述

答案2

以下类似于何塞·卡洛斯·桑托斯的回答array但利用该包尽可能实现自动化。

它会自动\mystep在每行的开头插入(这将步进一个计数器并将其插入),并将第一列的内容转换为数学运算。

\documentclass[]{article}

\usepackage{array}
\usepackage{tabularx}

\newcolumntype\math[1]{>{$}#1<{$}}
\newcolumntype{L}{>{\raggedright\arraybackslash}X}

\newcounter{mystep}
\renewcommand*\themystep{\arabic{mystep}.}
\newcommand*\mystep{\refstepcounter{mystep}\themystep}
\newcommand*\resetmystep{\setcounter{mystep}{0}}

\begin{document}
\noindent
\begin{tabularx}{\linewidth}{>{\mystep\quad}\math{l} L}
  \multicolumn{1}{l}{\textbf{Step}} & \textbf{Reason}\\% \multicolumn cancels the `\mystep\quad` and the `\math` column
  a=b               & Given \\
  a^2=ab            & Multiply both sides of (1) by $a$\\
  a^2-b^2=ab-b^2    & Substract $b^2$ from both sides of (2)\\
  (a-b)(a+b)=b(a-b) & Factor both sides of (3)\\
  a+b=b             & Divide both sides of (4) by $a-b$\\
  2b=b              & Replace $a$ by $b$ in (5) because $a=b$ and simplify\\
  2=1               & Divide both sides of (6) by $b$
\end{tabularx}
\end{document}

在此处输入图片描述

答案3

OpTeX 有一个解决方案:

\newcount\trownum
\def\printrow{\ifnum\trownum>0 \hbox to1em{\hss\bf\the\trownum.}\else\tabiteml={}\fi\incr\trownum}

\table{(\printrow$)l($)l}{
  \bf Step          & \bf Reason \cr
  a=b               & Given \cr
  a^2=ab            & Multiply both sides of (1) by $a$ \cr
  a^2-b^2=ab-b^2    & Substract $b^2$ from both sides of (2) \cr
  (a-b)(a+b)=b(a-b) & Factor both sides of (3) \cr
  a+b=b             & Divide both sides of (4) by $a-b$ \cr
  2b=b              & Replace $a$ by $b$ in (5) because $a=b$ and simplify \cr
  2=1               & Divide both sides of (6) by $b$
}
\bye

以下是使用纯 TeX 和 TeX 原语的解决方案:

\newcount\trownum
\def\printrow{\global\advance\trownum by1 \hbox to1em{\hss\bf\the\trownum.}}

\vbox{\halign{\printrow\enspace$#$\hfil\quad &#\hfil\cr
  \omit\bf Step     & \bf Reason \cr
  a=b               & Given \cr
  a^2=ab            & Multiply both sides of (1) by $a$ \cr
  a^2-b^2=ab-b^2    & Substract $b^2$ from both sides of (2) \cr
  (a-b)(a+b)=b(a-b) & Factor both sides of (3) \cr
  a+b=b             & Divide both sides of (4) by $a-b$ \cr
  2b=b              & Replace $a$ by $b$ in (5) because $a=b$ and simplify \cr
  2=1               & Divide both sides of (6) by $b$ \cr
}}
\bye

答案4

带有包的解决方案tabularray及其rownum功能:

\documentclass[margin=3mm]{standalone}
\usepackage{tabularray}

\begin{document}
\begin{tblr}{colspec = {l Q[l, mode=math] X[l]},
             cell{2-Z}{1} = {cmd=\the\numexpr\arabic{rownum}-1.},
             row{1}  = {mode=text, font=\bfseries}
             }
    &   Step                & Reason \\
    &   a=b                 & Given \\
    &   a^2=ab              & Multiply both sides of (1) by $a$\\
    &   a^2-b^2=ab-b^2      & Substract $b^2$ from both sides of (2)\\
    &   (a-b)(a+b)=b(a-b)   & Factor both sides of (3)\\
    &   a+b=b               & Divide both sides of (4) by $a-b$\\
    &   2b=b                & Replace $a$ by $b$ in (5) because $a=b$ and simplify\\
    &   2=1                 & Divide both sides of (6) by $b$
\end{tblr}
\end{document}

在此处输入图片描述

相关内容