对于上面的例子,我怎样才能删除各部分的缩进,以便 (a)、(b)、(c)、(d) 都与“问题 1”对齐?
\documentclass[addpoints, 12pt]{exam}
\usepackage[a4paper, total={6in, 8in}]{geometry}
\linespread{1.6}
\usepackage[utf8]{inputenc}
\usepackage{graphicx}
\usepackage{fancyhdr}
\usepackage{mlmodern}
\usepackage{amsmath}
\usepackage{amssymb}
\setlength{\topmargin}{0cm}
\setlength{\textheight}{9.25in}
\setlength{\oddsidemargin}{0.0in}
\setlength{\evensidemargin}{0.0in}
\setlength{\textwidth}{16cm}
\pagestyle{fancy}
\lhead{}
\chead{}
\rhead{}
\lfoot{}
\cfoot{\footnotesize{Page \thepage \ of \pageref{finalpage} -- \titlehd \ (\examcode)}}
\rfoot{}
\newcommand{\institution}{Maths Extension 2}
\newcommand{\titlehd}{Complex Numbers}
\newcommand{\examtype}{Summer Holidays Examination}
\newcommand{\examdate}{2021-2022}
\newcommand{\readtime}{10 Minutes}
\newcommand{\writetime}{THREE Hours}
\newcommand{\materials}{Non-programmable Calculators}
\setlength{\rightpointsmargin}{1.5cm}
\newpage
\begin{questions}
\marksnotpoints
\pointsinrightmargin
\pointformat{\bfseries\themarginpoints}
\qformat{\textbf{Question \thequestion} \hspace{2mm}\textbf{(\totalpoints \hspace{1mm}\points)}\hfill}
\question
\vspace{2mm}
\begin{parts}
\part[1]\text{If $(x+iy)^{2n}=a+ib$ where} $x,y,a,b,n$ $\in{\Bbb{Z}}$ find the value of $(y-ix)^{4n}$ in terms of $a$ and $b$
\vspace{8mm}
\part[2] Let $w=\cos{\frac{2\pi}{7}}+i\sin{\frac{2\pi}{7}}$. Show that $w, w^4$ and $w^5$ form the sides of an equilateral triangle.
\vspace{8mm}
\part
\begin{subparts}
\subpart[2] Find the solutions to the equation $z^n-1=0$ where $n$ is odd.
\vspace{2mm}
\subpart[2]Hence show that $\cos{\frac{2\pi}{n}}+\cos{\frac{4\pi}{n}}+...+\cos{\frac{(n-1)\pi}{n}}$ is independent of $n$.
\end{subparts}
\vspace{0.8cm}
\part[3]Let $w=\frac{2}{1+z}$. If $|z|=1$ and $0<\arg{z}<\frac{2\pi}{3}$, sketch the complex number $w$
\vspace{1cm}
\end{parts}
\newpage
答案1
使用新命令\questionx
代替\question
\newcommand{\questionx}[1]{% added <<<<<<<<<<<<<<<<<<<<
\marksnotpoints
\qformat{\textbf{Question~\thequestion} \hspace{1ex}\textbf{(\totalpoints \enspace \points)}\hfill}
\pointsinrightmargin%
\pointformat{\textbf{\themarginpoints}}%
\settowidth{\leftmargin}{(m)\hskip\labelsep}%
\question\hspace*{-\leftmargin}\parbox{\textwidth}{#1}
}
\documentclass[addpoints, 12pt]{exam}
\usepackage[a4paper, total={6in, 8in}]{geometry}
\linespread{1.6}
%\usepackage[utf8]{inputenc}
\usepackage{graphicx}
%\usepackage{fancyhdr}
\usepackage{mlmodern}
\usepackage{amsmath}
\usepackage{amssymb}
\setlength{\topmargin}{0cm}
\setlength{\textheight}{9.25in}
\setlength{\oddsidemargin}{0.0in}
\setlength{\evensidemargin}{0.0in}
\setlength{\textwidth}{16cm}
\usepackage{showframe} % show margins
\newcommand{\questionx}[1]{% added <<<<<<<<<<<<<<<<<<<<
\marksnotpoints
\qformat{\textbf{Question~\thequestion} \hspace{1ex}\textbf{(\totalpoints \enspace \points)}\hfill}
\pointsinrightmargin%
\pointformat{\textbf{\themarginpoints}}%
\settowidth{\leftmargin}{(m)\hskip\labelsep}%
\question\hspace*{-\leftmargin}\parbox{\textwidth}{#1}
}
\begin{document}
\newcommand{\institution}{Maths Extension 2}
\newcommand{\titlehd}{Complex Numbers}
\newcommand{\examtype}{Summer Holidays Examination}
\newcommand{\examdate}{2021-2022}
\newcommand{\readtime}{10 Minutes}
\newcommand{\writetime}{THREE Hours}
\newcommand{\materials}{Non-programmable Calculators}
\setlength{\rightpointsmargin}{1.5cm}
\newpage
\begin{questions}
% \marksnotpoints
% \pointsinrightmargin
% \pointformat{\bfseries\themarginpoints}
% \qformat{\textbf{Question \thequestion} \hspace{2mm}\textbf{(\totalpoints \hspace{1mm}\points)}\hfill}
\questionx{%
\vspace*{3mm}
\begin{parts}
\part[1]\text{If $(x+iy)^{2n}=a+ib$ where} $x,y,a,b,n$ $\in{\Bbb{Z}}$ find the value of $(y-ix)^{4n}$ in terms of $a$ and $b$
\vspace{8mm}
\part[2] Let $w=\cos{\frac{2\pi}{7}}+i\sin{\frac{2\pi}{7}}$. Show that $w, w^4$ and $w^5$ form the sides of an equilateral triangle.
\vspace{8mm}
\part
\begin{subparts}
\subpart[2] Find the solutions to the equation $z^n-1=0$ where $n$ is odd.
\vspace{2mm}
\subpart[2]Hence show that $\cos{\frac{2\pi}{n}}+\cos{\frac{4\pi}{n}}+...+\cos{\frac{(n-1)\pi}{n}}$ is independent of $n$.
\end{subparts}
\vspace{0.8cm}
\part[3]Let $w=\frac{2}{1+z}$. If $|z|=1$ and $0<\arg{z}<\frac{2\pi}{3}$, sketch the complex number $w$
\vspace{1cm}
\end{parts}
}% added <<<<<<<<<<<<<<<<<<<<
\end{questions}
\end{document}
更新(后续跟进)
要允许在部分内分页,请使用
\newcommand{\questionx}[1]{% added <<<<<<<<<<<<<<<<<<<<
\marksnotpoints
\qformat{\textbf{Question \thequestion} \hspace{2mm}\textbf{(\totalpoints \hspace{1mm}\points)}\hfill}
\pointsinrightmargin%
\pointformat{\textbf{\themarginpoints}}%
\settowidth{\leftmargin}{(m)\hskip\labelsep}%
\question\hspace*{-\leftmargin}#1% changed <<<<<<<<<<
}
\renewcommand{\partshook}{% added <<<<<<<<<<<<<<<<<<<<
\setlength{\leftmargin}{0pt}%
\setlength{\labelwidth}{0pt}%
}
答案2
您可以使用“partshook”获取与零件相关的长度。请注意,我创建了一个更像最小可编译文件的东西,因为您的文件给我带来了麻烦。我没有费心使方程式正确。
\documentclass{exam}
\begin{document}
\begin{questions}
\vspace{2mm}
% ***********
\renewcommand{\partshook}{%
\setlength{\leftmargin}{0pt}%
\setlength{\labelwidth}{-\labelsep}%
}
% **********
\question
\begin{parts}
\part[1] If $(x+iy)^{2n}=a+ib$ where $x,y,a,b,n$ $\in{{Z}}$ find the value of $(y-ix)^{4n}$ in terms of $a$ and $b$
\vspace{8mm}
\part[2] Let $w=\cos{\frac{2\pi}{7}}+i\sin{\frac{2\pi}{7}}$. Show that $w, w^4$ and $w^5$ form the sides of an equilateral triangle.
\vspace{8mm}
\part
\begin{subparts}
\subpart[2] Find the solutions to the equation $z^n-1=0$ where $n$ is odd.
\vspace{2mm}
\subpart[2]Hence show that $\cos{\frac{2\pi}{n}}+\cos{\frac{4\pi}{n}}+...+\cos{\frac{(n-1)\pi}{n}}$ is independent of $n$.
\end{subparts}
\vspace{0.8cm}
\part[3]Let $w=\frac{2}{1+z}$. If $|z|=1$ and $0<\arg{z}<\frac{2\pi}{3}$, sketch the complex number $w$
\vspace{1cm}
\end{parts}
\end{questions}
\end{document}