转换数组以自动对齐方程式

转换数组以自动对齐方程式

我有一个丑陋而巨大的矩阵,我需要自动将它们放入对齐的方程式中。每个单元格都应放入一个方程式中。对于第一行第二列的单元格,它应该是$r_{12} &= c_{\theta_1}$。矩阵是

\documentclass{article}
\usepackage{amsmath}

\begin{document}
$$
\left(\begin{array}{ccccccc} 0 & c_{\theta_1} & s_{\theta_1}\,s_{\theta_2} & c_{\theta_1}\,c_{\theta_3}-c_{\theta_2}\,s_{\theta_1}\,s_{\theta_3} & s_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)+c_{\theta_4}\,s_{\theta_1}\,s_{\theta_2} & c_{\theta_5}\,\left(c_{\theta_1}\,c_{\theta_3}-c_{\theta_2}\,s_{\theta_1}\,s_{\theta_3}\right)-s_{\theta_5}\,\left(c_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)-s_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right) & s_{\theta_6}\,\left(s_{\theta_5}\,\left(c_{\theta_1}\,c_{\theta_3}-c_{\theta_2}\,s_{\theta_1}\,s_{\theta_3}\right)+c_{\theta_5}\,\left(c_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)-s_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)\right)+c_{\theta_6}\,\left(s_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)+c_{\theta_4}\,s_{\theta_1}\,s_{\theta_2}\right)\\ 0 & s_{\theta_1} & -c_{\theta_1}\,s_{\theta_2} & c_{\theta_3}\,s_{\theta_1}+c_{\theta_1}\,c_{\theta_2}\,s_{\theta_3} & s_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)-c_{\theta_1}\,c_{\theta_4}\,s_{\theta_2} & c_{\theta_5}\,\left(c_{\theta_3}\,s_{\theta_1}+c_{\theta_1}\,c_{\theta_2}\,s_{\theta_3}\right)-s_{\theta_5}\,\left(c_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)+c_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right) & s_{\theta_6}\,\left(s_{\theta_5}\,\left(c_{\theta_3}\,s_{\theta_1}+c_{\theta_1}\,c_{\theta_2}\,s_{\theta_3}\right)+c_{\theta_5}\,\left(c_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)+c_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)\right)+c_{\theta_6}\,\left(s_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)-c_{\theta_1}\,c_{\theta_4}\,s_{\theta_2}\right)\\ 1 & 0 & c_{\theta_2} & s_{\theta_2}\,s_{\theta_3} & c_{\theta_2}\,c_{\theta_4}-c_{\theta_3}\,s_{\theta_2}\,s_{\theta_4} & s_{\theta_5}\,\left(c_{\theta_2}\,s_{\theta_4}+c_{\theta_3}\,c_{\theta_4}\,s_{\theta_2}\right)+c_{\theta_5}\,s_{\theta_2}\,s_{\theta_3} & c_{\theta_6}\,\left(c_{\theta_2}\,c_{\theta_4}-c_{\theta_3}\,s_{\theta_2}\,s_{\theta_4}\right)-s_{\theta_6}\,\left(c_{\theta_5}\,\left(c_{\theta_2}\,s_{\theta_4}+c_{\theta_3}\,c_{\theta_4}\,s_{\theta_2}\right)-s_{\theta_2}\,s_{\theta_3}\,s_{\theta_5}\right)\\ 0 & -\frac{17\,s_{\theta_1}}{50} & \frac{17\,c_{\theta_1}\,s_{\theta_2}}{50} & -\frac{2\,c_{\theta_1}\,s_{\theta_3}}{5}-\frac{17\,c_{\theta_3}\,s_{\theta_1}}{50}-\frac{17\,c_{\theta_1}\,c_{\theta_2}\,s_{\theta_3}}{50}-\frac{2\,c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}}{5} & \frac{17\,c_{\theta_1}\,c_{\theta_4}\,s_{\theta_2}}{50}+\frac{2\,c_{\theta_1}\,c_{\theta_3}\,s_{\theta_4}}{5}-\frac{17\,s_{\theta_1}\,s_{\theta_3}\,s_{\theta_4}}{50}+\frac{17\,c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\,s_{\theta_4}}{50}-\frac{2\,c_{\theta_2}\,s_{\theta_1}\,s_{\theta_3}\,s_{\theta_4}}{5} & \left(c_{\theta_5}\,\left(c_{\theta_3}\,s_{\theta_1}+c_{\theta_1}\,c_{\theta_2}\,s_{\theta_3}\right)-s_{\theta_5}\,\left(c_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)+c_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)\right)\,\left(\frac{17\,c_{\theta_2}}{50}+c_{\theta_2}\,\left(\frac{37\,c_{\theta_4}}{50}-\frac{37}{50}\right)-\frac{37\,c_{\theta_3}\,s_{\theta_2}\,s_{\theta_4}}{50}-\frac{17}{50}\right)-\frac{57\,s_{\theta_5}\,\left(c_{\theta_1}\,c_{\theta_3}-c_{\theta_2}\,s_{\theta_1}\,s_{\theta_3}\right)}{50}-\frac{57\,c_{\theta_5}\,\left(c_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)-s_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)}{50}+\left(s_{\theta_5}\,\left(c_{\theta_2}\,s_{\theta_4}+c_{\theta_3}\,c_{\theta_4}\,s_{\theta_2}\right)+c_{\theta_5}\,s_{\theta_2}\,s_{\theta_3}\right)\,\left(\frac{17\,c_{\theta_1}\,s_{\theta_2}}{50}-\frac{37\,s_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)}{50}+c_{\theta_1}\,s_{\theta_2}\,\left(\frac{37\,c_{\theta_4}}{50}-\frac{37}{50}\right)\right) & \left(s_{\theta_6}\,\left(s_{\theta_5}\,\left(c_{\theta_3}\,s_{\theta_1}+c_{\theta_1}\,c_{\theta_2}\,s_{\theta_3}\right)+c_{\theta_5}\,\left(c_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)+c_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)\right)+c_{\theta_6}\,\left(s_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)-c_{\theta_1}\,c_{\theta_4}\,s_{\theta_2}\right)\right)\,\left(\frac{17\,c_{\theta_2}}{50}+c_{\theta_2}\,\left(\frac{37\,c_{\theta_4}}{50}-\frac{37}{50}\right)-\frac{57\,s_{\theta_6}\,\left(c_{\theta_5}\,\left(c_{\theta_2}\,s_{\theta_4}+c_{\theta_3}\,c_{\theta_4}\,s_{\theta_2}\right)-s_{\theta_2}\,s_{\theta_3}\,s_{\theta_5}\right)}{50}+\left(c_{\theta_2}\,c_{\theta_4}-c_{\theta_3}\,s_{\theta_2}\,s_{\theta_4}\right)\,\left(\frac{57\,c_{\theta_6}}{50}-\frac{57}{50}\right)-\frac{37\,c_{\theta_3}\,s_{\theta_2}\,s_{\theta_4}}{50}-\frac{17}{50}\right)-\left(c_{\theta_6}\,\left(c_{\theta_2}\,c_{\theta_4}-c_{\theta_3}\,s_{\theta_2}\,s_{\theta_4}\right)-s_{\theta_6}\,\left(c_{\theta_5}\,\left(c_{\theta_2}\,s_{\theta_4}+c_{\theta_3}\,c_{\theta_4}\,s_{\theta_2}\right)-s_{\theta_2}\,s_{\theta_3}\,s_{\theta_5}\right)\right)\,\left(\left(s_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)-c_{\theta_1}\,c_{\theta_4}\,s_{\theta_2}\right)\,\left(\frac{57\,c_{\theta_6}}{50}-\frac{57}{50}\right)+\frac{37\,s_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)}{50}+\frac{57\,s_{\theta_6}\,\left(s_{\theta_5}\,\left(c_{\theta_3}\,s_{\theta_1}+c_{\theta_1}\,c_{\theta_2}\,s_{\theta_3}\right)+c_{\theta_5}\,\left(c_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)+c_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)\right)}{50}-\frac{17\,c_{\theta_1}\,s_{\theta_2}}{50}-c_{\theta_1}\,s_{\theta_2}\,\left(\frac{37\,c_{\theta_4}}{50}-\frac{37}{50}\right)\right)\\ 0 & \frac{17\,c_{\theta_1}}{50} & \frac{17\,s_{\theta_1}\,s_{\theta_2}}{50} & \frac{17\,c_{\theta_1}\,c_{\theta_3}}{50}-\frac{2\,s_{\theta_1}\,s_{\theta_3}}{5}+\frac{2\,c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}}{5}-\frac{17\,c_{\theta_2}\,s_{\theta_1}\,s_{\theta_3}}{50} & \frac{17\,c_{\theta_4}\,s_{\theta_1}\,s_{\theta_2}}{50}+\frac{17\,c_{\theta_1}\,s_{\theta_3}\,s_{\theta_4}}{50}+\frac{2\,c_{\theta_3}\,s_{\theta_1}\,s_{\theta_4}}{5}+\frac{2\,c_{\theta_1}\,c_{\theta_2}\,s_{\theta_3}\,s_{\theta_4}}{5}+\frac{17\,c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\,s_{\theta_4}}{50} & \left(s_{\theta_5}\,\left(c_{\theta_2}\,s_{\theta_4}+c_{\theta_3}\,c_{\theta_4}\,s_{\theta_2}\right)+c_{\theta_5}\,s_{\theta_2}\,s_{\theta_3}\right)\,\left(\frac{17\,s_{\theta_1}\,s_{\theta_2}}{50}+\frac{37\,s_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)}{50}+s_{\theta_1}\,s_{\theta_2}\,\left(\frac{37\,c_{\theta_4}}{50}-\frac{37}{50}\right)\right)-\frac{57\,s_{\theta_5}\,\left(c_{\theta_3}\,s_{\theta_1}+c_{\theta_1}\,c_{\theta_2}\,s_{\theta_3}\right)}{50}-\frac{57\,c_{\theta_5}\,\left(c_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)+c_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)}{50}-\left(c_{\theta_5}\,\left(c_{\theta_1}\,c_{\theta_3}-c_{\theta_2}\,s_{\theta_1}\,s_{\theta_3}\right)-s_{\theta_5}\,\left(c_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)-s_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)\right)\,\left(\frac{17\,c_{\theta_2}}{50}+c_{\theta_2}\,\left(\frac{37\,c_{\theta_4}}{50}-\frac{37}{50}\right)-\frac{37\,c_{\theta_3}\,s_{\theta_2}\,s_{\theta_4}}{50}-\frac{17}{50}\right) & \left(c_{\theta_6}\,\left(c_{\theta_2}\,c_{\theta_4}-c_{\theta_3}\,s_{\theta_2}\,s_{\theta_4}\right)-s_{\theta_6}\,\left(c_{\theta_5}\,\left(c_{\theta_2}\,s_{\theta_4}+c_{\theta_3}\,c_{\theta_4}\,s_{\theta_2}\right)-s_{\theta_2}\,s_{\theta_3}\,s_{\theta_5}\right)\right)\,\left(\frac{17\,s_{\theta_1}\,s_{\theta_2}}{50}+\frac{37\,s_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)}{50}+\left(s_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)+c_{\theta_4}\,s_{\theta_1}\,s_{\theta_2}\right)\,\left(\frac{57\,c_{\theta_6}}{50}-\frac{57}{50}\right)+\frac{57\,s_{\theta_6}\,\left(s_{\theta_5}\,\left(c_{\theta_1}\,c_{\theta_3}-c_{\theta_2}\,s_{\theta_1}\,s_{\theta_3}\right)+c_{\theta_5}\,\left(c_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)-s_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)\right)}{50}+s_{\theta_1}\,s_{\theta_2}\,\left(\frac{37\,c_{\theta_4}}{50}-\frac{37}{50}\right)\right)-\left(s_{\theta_6}\,\left(s_{\theta_5}\,\left(c_{\theta_1}\,c_{\theta_3}-c_{\theta_2}\,s_{\theta_1}\,s_{\theta_3}\right)+c_{\theta_5}\,\left(c_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)-s_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)\right)+c_{\theta_6}\,\left(s_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)+c_{\theta_4}\,s_{\theta_1}\,s_{\theta_2}\right)\right)\,\left(\frac{17\,c_{\theta_2}}{50}+c_{\theta_2}\,\left(\frac{37\,c_{\theta_4}}{50}-\frac{37}{50}\right)-\frac{57\,s_{\theta_6}\,\left(c_{\theta_5}\,\left(c_{\theta_2}\,s_{\theta_4}+c_{\theta_3}\,c_{\theta_4}\,s_{\theta_2}\right)-s_{\theta_2}\,s_{\theta_3}\,s_{\theta_5}\right)}{50}+\left(c_{\theta_2}\,c_{\theta_4}-c_{\theta_3}\,s_{\theta_2}\,s_{\theta_4}\right)\,\left(\frac{57\,c_{\theta_6}}{50}-\frac{57}{50}\right)-\frac{37\,c_{\theta_3}\,s_{\theta_2}\,s_{\theta_4}}{50}-\frac{17}{50}\right)\\ 0 & 0 & 0 & \frac{2\,c_{\theta_3}\,s_{\theta_2}}{5} & \frac{2\,s_{\theta_2}\,s_{\theta_3}\,s_{\theta_4}}{5} & \frac{57\,c_{\theta_5}\,\left(c_{\theta_2}\,s_{\theta_4}+c_{\theta_3}\,c_{\theta_4}\,s_{\theta_2}\right)}{50}-\left(c_{\theta_5}\,\left(c_{\theta_1}\,c_{\theta_3}-c_{\theta_2}\,s_{\theta_1}\,s_{\theta_3}\right)-s_{\theta_5}\,\left(c_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)-s_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)\right)\,\left(\frac{17\,c_{\theta_1}\,s_{\theta_2}}{50}-\frac{37\,s_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)}{50}+c_{\theta_1}\,s_{\theta_2}\,\left(\frac{37\,c_{\theta_4}}{50}-\frac{37}{50}\right)\right)-\left(c_{\theta_5}\,\left(c_{\theta_3}\,s_{\theta_1}+c_{\theta_1}\,c_{\theta_2}\,s_{\theta_3}\right)-s_{\theta_5}\,\left(c_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)+c_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)\right)\,\left(\frac{17\,s_{\theta_1}\,s_{\theta_2}}{50}+\frac{37\,s_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)}{50}+s_{\theta_1}\,s_{\theta_2}\,\left(\frac{37\,c_{\theta_4}}{50}-\frac{37}{50}\right)\right)-\frac{57\,s_{\theta_2}\,s_{\theta_3}\,s_{\theta_5}}{50} & \frac{2\,c_{\theta_6}\,s_{\theta_2}\,s_{\theta_3}\,s_{\theta_4}}{5}+\frac{2\,c_{\theta_3}\,s_{\theta_2}\,s_{\theta_5}\,s_{\theta_6}}{5}+\frac{2\,c_{\theta_5}\,s_{\theta_2}\,s_{\theta_3}\,s_{\theta_6}}{5}+\frac{2\,c_{\theta_2}\,s_{\theta_4}\,s_{\theta_5}\,s_{\theta_6}}{5}+\frac{2\,c_{\theta_3}\,c_{\theta_4}\,s_{\theta_2}\,s_{\theta_5}\,s_{\theta_6}}{5}+\frac{2\,c_{\theta_4}\,c_{\theta_5}\,s_{\theta_2}\,s_{\theta_3}\,s_{\theta_6}}{5} \end{array}\right)
$$
\end{document}

编辑:正如评论部分所要求的,这将准确说明我正在寻找的内容。

\documentclass{article}
\usepackage{amsmath}

\begin{document}
\[
\left(
\begin{array}{cccc}  c_{\theta_1} & -s_{\theta_2} \\ c_{\theta_2} & -s_{\theta_1} \end{array}
\right)
\]

\begin{align*}
r_{11} &=  c_{\theta_1} \\
r_{12} &= -s_{\theta_2} \\
r_{21} &= c_{\theta_2} \\
r_{22} &= -s_{\theta_1}
\end{align*}

\end{document}

在此处输入图片描述

答案1

结果显然很差,但我也想不出更好的办法。

\documentclass{article}
\usepackage{amsmath}

\ExplSyntaxOn

\NewDocumentCommand{\tameginormous}{m}
 {
  \croco_ginormous_tame:n { #1 }
 }

\tl_new:N \l__croco_ginormous_matrix_in_tl
\seq_new:N \l__croco_ginormous_matrix_out_seq
\seq_new:N \l__croco_ginormous_rows_seq
\seq_new:N \l__croco_ginormous_col_seq

\cs_new_protected:Nn \croco_ginormous_tame:n
 {
  \tl_set:Nn \l__croco_ginormous_matrix_in_tl { #1 }
  % remove the beginning
  \regex_replace_once:nnN { \A .* \{c*\} } { } \l__croco_ginormous_matrix_in_tl
  % remove the end
  \regex_replace_once:nnN { \c{end} .* \Z } { } \l__croco_ginormous_matrix_in_tl
  % remove all \left and \right
  \regex_replace_all:nnN { \c{left}|\c{right} } { } \l__croco_ginormous_matrix_in_tl
  % split the input at \\
  \seq_set_split:NnV \l__croco_ginormous_rows_seq { \\ } \l__croco_ginormous_matrix_in_tl
  % now process the thing
  \seq_clear:N \l__croco_ginormous_matrix_out_seq
  \seq_map_indexed_function:NN \l__croco_ginormous_rows_seq \__croco_ginormous_row:nn
  % output
  \par
  \group_begin:
  \linespread{1.5}\selectfont
  \raggedright
  \setlength{\parindent}{-3em}\setlength{\leftskip}{3em}
  \seq_use:Nn \l__croco_ginormous_matrix_out_seq { \par }
  \par
  \group_end:
 }

\cs_new_protected:Nn \__croco_ginormous_row:nn
 {% #1 = row index, #2 = row
  % split the row at &
  \seq_set_split:Nnn \l__croco_ginormous_col_seq { & } { #2 }
  \seq_map_indexed_inline:Nn \l__croco_ginormous_col_seq
   {
    \seq_put_right:Nn \l__croco_ginormous_matrix_out_seq { $ r\sb{#1##1} = ##2 $ }
   }
 }

\ExplSyntaxOff

\begin{document}

\tameginormous{
  \left(\begin{array}{ccccccc} 0 & c_{\theta_1} & s_{\theta_1}\,s_{\theta_2} & c_{\theta_1}\,c_{\theta_3}-c_{\theta_2}\,s_{\theta_1}\,s_{\theta_3} & s_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)+c_{\theta_4}\,s_{\theta_1}\,s_{\theta_2} & c_{\theta_5}\,\left(c_{\theta_1}\,c_{\theta_3}-c_{\theta_2}\,s_{\theta_1}\,s_{\theta_3}\right)-s_{\theta_5}\,\left(c_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)-s_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right) & s_{\theta_6}\,\left(s_{\theta_5}\,\left(c_{\theta_1}\,c_{\theta_3}-c_{\theta_2}\,s_{\theta_1}\,s_{\theta_3}\right)+c_{\theta_5}\,\left(c_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)-s_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)\right)+c_{\theta_6}\,\left(s_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)+c_{\theta_4}\,s_{\theta_1}\,s_{\theta_2}\right)\\ 0 & s_{\theta_1} & -c_{\theta_1}\,s_{\theta_2} & c_{\theta_3}\,s_{\theta_1}+c_{\theta_1}\,c_{\theta_2}\,s_{\theta_3} & s_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)-c_{\theta_1}\,c_{\theta_4}\,s_{\theta_2} & c_{\theta_5}\,\left(c_{\theta_3}\,s_{\theta_1}+c_{\theta_1}\,c_{\theta_2}\,s_{\theta_3}\right)-s_{\theta_5}\,\left(c_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)+c_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right) & s_{\theta_6}\,\left(s_{\theta_5}\,\left(c_{\theta_3}\,s_{\theta_1}+c_{\theta_1}\,c_{\theta_2}\,s_{\theta_3}\right)+c_{\theta_5}\,\left(c_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)+c_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)\right)+c_{\theta_6}\,\left(s_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)-c_{\theta_1}\,c_{\theta_4}\,s_{\theta_2}\right)\\ 1 & 0 & c_{\theta_2} & s_{\theta_2}\,s_{\theta_3} & c_{\theta_2}\,c_{\theta_4}-c_{\theta_3}\,s_{\theta_2}\,s_{\theta_4} & s_{\theta_5}\,\left(c_{\theta_2}\,s_{\theta_4}+c_{\theta_3}\,c_{\theta_4}\,s_{\theta_2}\right)+c_{\theta_5}\,s_{\theta_2}\,s_{\theta_3} & c_{\theta_6}\,\left(c_{\theta_2}\,c_{\theta_4}-c_{\theta_3}\,s_{\theta_2}\,s_{\theta_4}\right)-s_{\theta_6}\,\left(c_{\theta_5}\,\left(c_{\theta_2}\,s_{\theta_4}+c_{\theta_3}\,c_{\theta_4}\,s_{\theta_2}\right)-s_{\theta_2}\,s_{\theta_3}\,s_{\theta_5}\right)\\ 0 & -\frac{17\,s_{\theta_1}}{50} & \frac{17\,c_{\theta_1}\,s_{\theta_2}}{50} & -\frac{2\,c_{\theta_1}\,s_{\theta_3}}{5}-\frac{17\,c_{\theta_3}\,s_{\theta_1}}{50}-\frac{17\,c_{\theta_1}\,c_{\theta_2}\,s_{\theta_3}}{50}-\frac{2\,c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}}{5} & \frac{17\,c_{\theta_1}\,c_{\theta_4}\,s_{\theta_2}}{50}+\frac{2\,c_{\theta_1}\,c_{\theta_3}\,s_{\theta_4}}{5}-\frac{17\,s_{\theta_1}\,s_{\theta_3}\,s_{\theta_4}}{50}+\frac{17\,c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\,s_{\theta_4}}{50}-\frac{2\,c_{\theta_2}\,s_{\theta_1}\,s_{\theta_3}\,s_{\theta_4}}{5} & \left(c_{\theta_5}\,\left(c_{\theta_3}\,s_{\theta_1}+c_{\theta_1}\,c_{\theta_2}\,s_{\theta_3}\right)-s_{\theta_5}\,\left(c_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)+c_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)\right)\,\left(\frac{17\,c_{\theta_2}}{50}+c_{\theta_2}\,\left(\frac{37\,c_{\theta_4}}{50}-\frac{37}{50}\right)-\frac{37\,c_{\theta_3}\,s_{\theta_2}\,s_{\theta_4}}{50}-\frac{17}{50}\right)-\frac{57\,s_{\theta_5}\,\left(c_{\theta_1}\,c_{\theta_3}-c_{\theta_2}\,s_{\theta_1}\,s_{\theta_3}\right)}{50}-\frac{57\,c_{\theta_5}\,\left(c_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)-s_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)}{50}+\left(s_{\theta_5}\,\left(c_{\theta_2}\,s_{\theta_4}+c_{\theta_3}\,c_{\theta_4}\,s_{\theta_2}\right)+c_{\theta_5}\,s_{\theta_2}\,s_{\theta_3}\right)\,\left(\frac{17\,c_{\theta_1}\,s_{\theta_2}}{50}-\frac{37\,s_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)}{50}+c_{\theta_1}\,s_{\theta_2}\,\left(\frac{37\,c_{\theta_4}}{50}-\frac{37}{50}\right)\right) & \left(s_{\theta_6}\,\left(s_{\theta_5}\,\left(c_{\theta_3}\,s_{\theta_1}+c_{\theta_1}\,c_{\theta_2}\,s_{\theta_3}\right)+c_{\theta_5}\,\left(c_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)+c_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)\right)+c_{\theta_6}\,\left(s_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)-c_{\theta_1}\,c_{\theta_4}\,s_{\theta_2}\right)\right)\,\left(\frac{17\,c_{\theta_2}}{50}+c_{\theta_2}\,\left(\frac{37\,c_{\theta_4}}{50}-\frac{37}{50}\right)-\frac{57\,s_{\theta_6}\,\left(c_{\theta_5}\,\left(c_{\theta_2}\,s_{\theta_4}+c_{\theta_3}\,c_{\theta_4}\,s_{\theta_2}\right)-s_{\theta_2}\,s_{\theta_3}\,s_{\theta_5}\right)}{50}+\left(c_{\theta_2}\,c_{\theta_4}-c_{\theta_3}\,s_{\theta_2}\,s_{\theta_4}\right)\,\left(\frac{57\,c_{\theta_6}}{50}-\frac{57}{50}\right)-\frac{37\,c_{\theta_3}\,s_{\theta_2}\,s_{\theta_4}}{50}-\frac{17}{50}\right)-\left(c_{\theta_6}\,\left(c_{\theta_2}\,c_{\theta_4}-c_{\theta_3}\,s_{\theta_2}\,s_{\theta_4}\right)-s_{\theta_6}\,\left(c_{\theta_5}\,\left(c_{\theta_2}\,s_{\theta_4}+c_{\theta_3}\,c_{\theta_4}\,s_{\theta_2}\right)-s_{\theta_2}\,s_{\theta_3}\,s_{\theta_5}\right)\right)\,\left(\left(s_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)-c_{\theta_1}\,c_{\theta_4}\,s_{\theta_2}\right)\,\left(\frac{57\,c_{\theta_6}}{50}-\frac{57}{50}\right)+\frac{37\,s_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)}{50}+\frac{57\,s_{\theta_6}\,\left(s_{\theta_5}\,\left(c_{\theta_3}\,s_{\theta_1}+c_{\theta_1}\,c_{\theta_2}\,s_{\theta_3}\right)+c_{\theta_5}\,\left(c_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)+c_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)\right)}{50}-\frac{17\,c_{\theta_1}\,s_{\theta_2}}{50}-c_{\theta_1}\,s_{\theta_2}\,\left(\frac{37\,c_{\theta_4}}{50}-\frac{37}{50}\right)\right)\\ 0 & \frac{17\,c_{\theta_1}}{50} & \frac{17\,s_{\theta_1}\,s_{\theta_2}}{50} & \frac{17\,c_{\theta_1}\,c_{\theta_3}}{50}-\frac{2\,s_{\theta_1}\,s_{\theta_3}}{5}+\frac{2\,c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}}{5}-\frac{17\,c_{\theta_2}\,s_{\theta_1}\,s_{\theta_3}}{50} & \frac{17\,c_{\theta_4}\,s_{\theta_1}\,s_{\theta_2}}{50}+\frac{17\,c_{\theta_1}\,s_{\theta_3}\,s_{\theta_4}}{50}+\frac{2\,c_{\theta_3}\,s_{\theta_1}\,s_{\theta_4}}{5}+\frac{2\,c_{\theta_1}\,c_{\theta_2}\,s_{\theta_3}\,s_{\theta_4}}{5}+\frac{17\,c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\,s_{\theta_4}}{50} & \left(s_{\theta_5}\,\left(c_{\theta_2}\,s_{\theta_4}+c_{\theta_3}\,c_{\theta_4}\,s_{\theta_2}\right)+c_{\theta_5}\,s_{\theta_2}\,s_{\theta_3}\right)\,\left(\frac{17\,s_{\theta_1}\,s_{\theta_2}}{50}+\frac{37\,s_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)}{50}+s_{\theta_1}\,s_{\theta_2}\,\left(\frac{37\,c_{\theta_4}}{50}-\frac{37}{50}\right)\right)-\frac{57\,s_{\theta_5}\,\left(c_{\theta_3}\,s_{\theta_1}+c_{\theta_1}\,c_{\theta_2}\,s_{\theta_3}\right)}{50}-\frac{57\,c_{\theta_5}\,\left(c_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)+c_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)}{50}-\left(c_{\theta_5}\,\left(c_{\theta_1}\,c_{\theta_3}-c_{\theta_2}\,s_{\theta_1}\,s_{\theta_3}\right)-s_{\theta_5}\,\left(c_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)-s_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)\right)\,\left(\frac{17\,c_{\theta_2}}{50}+c_{\theta_2}\,\left(\frac{37\,c_{\theta_4}}{50}-\frac{37}{50}\right)-\frac{37\,c_{\theta_3}\,s_{\theta_2}\,s_{\theta_4}}{50}-\frac{17}{50}\right) & \left(c_{\theta_6}\,\left(c_{\theta_2}\,c_{\theta_4}-c_{\theta_3}\,s_{\theta_2}\,s_{\theta_4}\right)-s_{\theta_6}\,\left(c_{\theta_5}\,\left(c_{\theta_2}\,s_{\theta_4}+c_{\theta_3}\,c_{\theta_4}\,s_{\theta_2}\right)-s_{\theta_2}\,s_{\theta_3}\,s_{\theta_5}\right)\right)\,\left(\frac{17\,s_{\theta_1}\,s_{\theta_2}}{50}+\frac{37\,s_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)}{50}+\left(s_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)+c_{\theta_4}\,s_{\theta_1}\,s_{\theta_2}\right)\,\left(\frac{57\,c_{\theta_6}}{50}-\frac{57}{50}\right)+\frac{57\,s_{\theta_6}\,\left(s_{\theta_5}\,\left(c_{\theta_1}\,c_{\theta_3}-c_{\theta_2}\,s_{\theta_1}\,s_{\theta_3}\right)+c_{\theta_5}\,\left(c_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)-s_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)\right)}{50}+s_{\theta_1}\,s_{\theta_2}\,\left(\frac{37\,c_{\theta_4}}{50}-\frac{37}{50}\right)\right)-\left(s_{\theta_6}\,\left(s_{\theta_5}\,\left(c_{\theta_1}\,c_{\theta_3}-c_{\theta_2}\,s_{\theta_1}\,s_{\theta_3}\right)+c_{\theta_5}\,\left(c_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)-s_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)\right)+c_{\theta_6}\,\left(s_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)+c_{\theta_4}\,s_{\theta_1}\,s_{\theta_2}\right)\right)\,\left(\frac{17\,c_{\theta_2}}{50}+c_{\theta_2}\,\left(\frac{37\,c_{\theta_4}}{50}-\frac{37}{50}\right)-\frac{57\,s_{\theta_6}\,\left(c_{\theta_5}\,\left(c_{\theta_2}\,s_{\theta_4}+c_{\theta_3}\,c_{\theta_4}\,s_{\theta_2}\right)-s_{\theta_2}\,s_{\theta_3}\,s_{\theta_5}\right)}{50}+\left(c_{\theta_2}\,c_{\theta_4}-c_{\theta_3}\,s_{\theta_2}\,s_{\theta_4}\right)\,\left(\frac{57\,c_{\theta_6}}{50}-\frac{57}{50}\right)-\frac{37\,c_{\theta_3}\,s_{\theta_2}\,s_{\theta_4}}{50}-\frac{17}{50}\right)\\ 0 & 0 & 0 & \frac{2\,c_{\theta_3}\,s_{\theta_2}}{5} & \frac{2\,s_{\theta_2}\,s_{\theta_3}\,s_{\theta_4}}{5} & \frac{57\,c_{\theta_5}\,\left(c_{\theta_2}\,s_{\theta_4}+c_{\theta_3}\,c_{\theta_4}\,s_{\theta_2}\right)}{50}-\left(c_{\theta_5}\,\left(c_{\theta_1}\,c_{\theta_3}-c_{\theta_2}\,s_{\theta_1}\,s_{\theta_3}\right)-s_{\theta_5}\,\left(c_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)-s_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)\right)\,\left(\frac{17\,c_{\theta_1}\,s_{\theta_2}}{50}-\frac{37\,s_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)}{50}+c_{\theta_1}\,s_{\theta_2}\,\left(\frac{37\,c_{\theta_4}}{50}-\frac{37}{50}\right)\right)-\left(c_{\theta_5}\,\left(c_{\theta_3}\,s_{\theta_1}+c_{\theta_1}\,c_{\theta_2}\,s_{\theta_3}\right)-s_{\theta_5}\,\left(c_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)+c_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)\right)\,\left(\frac{17\,s_{\theta_1}\,s_{\theta_2}}{50}+\frac{37\,s_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)}{50}+s_{\theta_1}\,s_{\theta_2}\,\left(\frac{37\,c_{\theta_4}}{50}-\frac{37}{50}\right)\right)-\frac{57\,s_{\theta_2}\,s_{\theta_3}\,s_{\theta_5}}{50} & \frac{2\,c_{\theta_6}\,s_{\theta_2}\,s_{\theta_3}\,s_{\theta_4}}{5}+\frac{2\,c_{\theta_3}\,s_{\theta_2}\,s_{\theta_5}\,s_{\theta_6}}{5}+\frac{2\,c_{\theta_5}\,s_{\theta_2}\,s_{\theta_3}\,s_{\theta_6}}{5}+\frac{2\,c_{\theta_2}\,s_{\theta_4}\,s_{\theta_5}\,s_{\theta_6}}{5}+\frac{2\,c_{\theta_3}\,c_{\theta_4}\,s_{\theta_2}\,s_{\theta_5}\,s_{\theta_6}}{5}+\frac{2\,c_{\theta_4}\,c_{\theta_5}\,s_{\theta_2}\,s_{\theta_3}\,s_{\theta_6}}{5} \end{array}\right)
}

\end{document}

开始的图片

在此处输入图片描述

结局图片

在此处输入图片描述

相关内容