我有一个丑陋而巨大的矩阵,我需要自动将它们放入对齐的方程式中。每个单元格都应放入一个方程式中。对于第一行第二列的单元格,它应该是$r_{12} &= c_{\theta_1}$
。矩阵是
\documentclass{article}
\usepackage{amsmath}
\begin{document}
$$
\left(\begin{array}{ccccccc} 0 & c_{\theta_1} & s_{\theta_1}\,s_{\theta_2} & c_{\theta_1}\,c_{\theta_3}-c_{\theta_2}\,s_{\theta_1}\,s_{\theta_3} & s_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)+c_{\theta_4}\,s_{\theta_1}\,s_{\theta_2} & c_{\theta_5}\,\left(c_{\theta_1}\,c_{\theta_3}-c_{\theta_2}\,s_{\theta_1}\,s_{\theta_3}\right)-s_{\theta_5}\,\left(c_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)-s_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right) & s_{\theta_6}\,\left(s_{\theta_5}\,\left(c_{\theta_1}\,c_{\theta_3}-c_{\theta_2}\,s_{\theta_1}\,s_{\theta_3}\right)+c_{\theta_5}\,\left(c_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)-s_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)\right)+c_{\theta_6}\,\left(s_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)+c_{\theta_4}\,s_{\theta_1}\,s_{\theta_2}\right)\\ 0 & s_{\theta_1} & -c_{\theta_1}\,s_{\theta_2} & c_{\theta_3}\,s_{\theta_1}+c_{\theta_1}\,c_{\theta_2}\,s_{\theta_3} & s_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)-c_{\theta_1}\,c_{\theta_4}\,s_{\theta_2} & c_{\theta_5}\,\left(c_{\theta_3}\,s_{\theta_1}+c_{\theta_1}\,c_{\theta_2}\,s_{\theta_3}\right)-s_{\theta_5}\,\left(c_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)+c_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right) & s_{\theta_6}\,\left(s_{\theta_5}\,\left(c_{\theta_3}\,s_{\theta_1}+c_{\theta_1}\,c_{\theta_2}\,s_{\theta_3}\right)+c_{\theta_5}\,\left(c_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)+c_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)\right)+c_{\theta_6}\,\left(s_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)-c_{\theta_1}\,c_{\theta_4}\,s_{\theta_2}\right)\\ 1 & 0 & c_{\theta_2} & s_{\theta_2}\,s_{\theta_3} & c_{\theta_2}\,c_{\theta_4}-c_{\theta_3}\,s_{\theta_2}\,s_{\theta_4} & s_{\theta_5}\,\left(c_{\theta_2}\,s_{\theta_4}+c_{\theta_3}\,c_{\theta_4}\,s_{\theta_2}\right)+c_{\theta_5}\,s_{\theta_2}\,s_{\theta_3} & c_{\theta_6}\,\left(c_{\theta_2}\,c_{\theta_4}-c_{\theta_3}\,s_{\theta_2}\,s_{\theta_4}\right)-s_{\theta_6}\,\left(c_{\theta_5}\,\left(c_{\theta_2}\,s_{\theta_4}+c_{\theta_3}\,c_{\theta_4}\,s_{\theta_2}\right)-s_{\theta_2}\,s_{\theta_3}\,s_{\theta_5}\right)\\ 0 & -\frac{17\,s_{\theta_1}}{50} & \frac{17\,c_{\theta_1}\,s_{\theta_2}}{50} & -\frac{2\,c_{\theta_1}\,s_{\theta_3}}{5}-\frac{17\,c_{\theta_3}\,s_{\theta_1}}{50}-\frac{17\,c_{\theta_1}\,c_{\theta_2}\,s_{\theta_3}}{50}-\frac{2\,c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}}{5} & \frac{17\,c_{\theta_1}\,c_{\theta_4}\,s_{\theta_2}}{50}+\frac{2\,c_{\theta_1}\,c_{\theta_3}\,s_{\theta_4}}{5}-\frac{17\,s_{\theta_1}\,s_{\theta_3}\,s_{\theta_4}}{50}+\frac{17\,c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\,s_{\theta_4}}{50}-\frac{2\,c_{\theta_2}\,s_{\theta_1}\,s_{\theta_3}\,s_{\theta_4}}{5} & \left(c_{\theta_5}\,\left(c_{\theta_3}\,s_{\theta_1}+c_{\theta_1}\,c_{\theta_2}\,s_{\theta_3}\right)-s_{\theta_5}\,\left(c_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)+c_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)\right)\,\left(\frac{17\,c_{\theta_2}}{50}+c_{\theta_2}\,\left(\frac{37\,c_{\theta_4}}{50}-\frac{37}{50}\right)-\frac{37\,c_{\theta_3}\,s_{\theta_2}\,s_{\theta_4}}{50}-\frac{17}{50}\right)-\frac{57\,s_{\theta_5}\,\left(c_{\theta_1}\,c_{\theta_3}-c_{\theta_2}\,s_{\theta_1}\,s_{\theta_3}\right)}{50}-\frac{57\,c_{\theta_5}\,\left(c_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)-s_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)}{50}+\left(s_{\theta_5}\,\left(c_{\theta_2}\,s_{\theta_4}+c_{\theta_3}\,c_{\theta_4}\,s_{\theta_2}\right)+c_{\theta_5}\,s_{\theta_2}\,s_{\theta_3}\right)\,\left(\frac{17\,c_{\theta_1}\,s_{\theta_2}}{50}-\frac{37\,s_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)}{50}+c_{\theta_1}\,s_{\theta_2}\,\left(\frac{37\,c_{\theta_4}}{50}-\frac{37}{50}\right)\right) & \left(s_{\theta_6}\,\left(s_{\theta_5}\,\left(c_{\theta_3}\,s_{\theta_1}+c_{\theta_1}\,c_{\theta_2}\,s_{\theta_3}\right)+c_{\theta_5}\,\left(c_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)+c_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)\right)+c_{\theta_6}\,\left(s_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)-c_{\theta_1}\,c_{\theta_4}\,s_{\theta_2}\right)\right)\,\left(\frac{17\,c_{\theta_2}}{50}+c_{\theta_2}\,\left(\frac{37\,c_{\theta_4}}{50}-\frac{37}{50}\right)-\frac{57\,s_{\theta_6}\,\left(c_{\theta_5}\,\left(c_{\theta_2}\,s_{\theta_4}+c_{\theta_3}\,c_{\theta_4}\,s_{\theta_2}\right)-s_{\theta_2}\,s_{\theta_3}\,s_{\theta_5}\right)}{50}+\left(c_{\theta_2}\,c_{\theta_4}-c_{\theta_3}\,s_{\theta_2}\,s_{\theta_4}\right)\,\left(\frac{57\,c_{\theta_6}}{50}-\frac{57}{50}\right)-\frac{37\,c_{\theta_3}\,s_{\theta_2}\,s_{\theta_4}}{50}-\frac{17}{50}\right)-\left(c_{\theta_6}\,\left(c_{\theta_2}\,c_{\theta_4}-c_{\theta_3}\,s_{\theta_2}\,s_{\theta_4}\right)-s_{\theta_6}\,\left(c_{\theta_5}\,\left(c_{\theta_2}\,s_{\theta_4}+c_{\theta_3}\,c_{\theta_4}\,s_{\theta_2}\right)-s_{\theta_2}\,s_{\theta_3}\,s_{\theta_5}\right)\right)\,\left(\left(s_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)-c_{\theta_1}\,c_{\theta_4}\,s_{\theta_2}\right)\,\left(\frac{57\,c_{\theta_6}}{50}-\frac{57}{50}\right)+\frac{37\,s_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)}{50}+\frac{57\,s_{\theta_6}\,\left(s_{\theta_5}\,\left(c_{\theta_3}\,s_{\theta_1}+c_{\theta_1}\,c_{\theta_2}\,s_{\theta_3}\right)+c_{\theta_5}\,\left(c_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)+c_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)\right)}{50}-\frac{17\,c_{\theta_1}\,s_{\theta_2}}{50}-c_{\theta_1}\,s_{\theta_2}\,\left(\frac{37\,c_{\theta_4}}{50}-\frac{37}{50}\right)\right)\\ 0 & \frac{17\,c_{\theta_1}}{50} & \frac{17\,s_{\theta_1}\,s_{\theta_2}}{50} & \frac{17\,c_{\theta_1}\,c_{\theta_3}}{50}-\frac{2\,s_{\theta_1}\,s_{\theta_3}}{5}+\frac{2\,c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}}{5}-\frac{17\,c_{\theta_2}\,s_{\theta_1}\,s_{\theta_3}}{50} & \frac{17\,c_{\theta_4}\,s_{\theta_1}\,s_{\theta_2}}{50}+\frac{17\,c_{\theta_1}\,s_{\theta_3}\,s_{\theta_4}}{50}+\frac{2\,c_{\theta_3}\,s_{\theta_1}\,s_{\theta_4}}{5}+\frac{2\,c_{\theta_1}\,c_{\theta_2}\,s_{\theta_3}\,s_{\theta_4}}{5}+\frac{17\,c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\,s_{\theta_4}}{50} & \left(s_{\theta_5}\,\left(c_{\theta_2}\,s_{\theta_4}+c_{\theta_3}\,c_{\theta_4}\,s_{\theta_2}\right)+c_{\theta_5}\,s_{\theta_2}\,s_{\theta_3}\right)\,\left(\frac{17\,s_{\theta_1}\,s_{\theta_2}}{50}+\frac{37\,s_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)}{50}+s_{\theta_1}\,s_{\theta_2}\,\left(\frac{37\,c_{\theta_4}}{50}-\frac{37}{50}\right)\right)-\frac{57\,s_{\theta_5}\,\left(c_{\theta_3}\,s_{\theta_1}+c_{\theta_1}\,c_{\theta_2}\,s_{\theta_3}\right)}{50}-\frac{57\,c_{\theta_5}\,\left(c_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)+c_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)}{50}-\left(c_{\theta_5}\,\left(c_{\theta_1}\,c_{\theta_3}-c_{\theta_2}\,s_{\theta_1}\,s_{\theta_3}\right)-s_{\theta_5}\,\left(c_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)-s_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)\right)\,\left(\frac{17\,c_{\theta_2}}{50}+c_{\theta_2}\,\left(\frac{37\,c_{\theta_4}}{50}-\frac{37}{50}\right)-\frac{37\,c_{\theta_3}\,s_{\theta_2}\,s_{\theta_4}}{50}-\frac{17}{50}\right) & \left(c_{\theta_6}\,\left(c_{\theta_2}\,c_{\theta_4}-c_{\theta_3}\,s_{\theta_2}\,s_{\theta_4}\right)-s_{\theta_6}\,\left(c_{\theta_5}\,\left(c_{\theta_2}\,s_{\theta_4}+c_{\theta_3}\,c_{\theta_4}\,s_{\theta_2}\right)-s_{\theta_2}\,s_{\theta_3}\,s_{\theta_5}\right)\right)\,\left(\frac{17\,s_{\theta_1}\,s_{\theta_2}}{50}+\frac{37\,s_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)}{50}+\left(s_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)+c_{\theta_4}\,s_{\theta_1}\,s_{\theta_2}\right)\,\left(\frac{57\,c_{\theta_6}}{50}-\frac{57}{50}\right)+\frac{57\,s_{\theta_6}\,\left(s_{\theta_5}\,\left(c_{\theta_1}\,c_{\theta_3}-c_{\theta_2}\,s_{\theta_1}\,s_{\theta_3}\right)+c_{\theta_5}\,\left(c_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)-s_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)\right)}{50}+s_{\theta_1}\,s_{\theta_2}\,\left(\frac{37\,c_{\theta_4}}{50}-\frac{37}{50}\right)\right)-\left(s_{\theta_6}\,\left(s_{\theta_5}\,\left(c_{\theta_1}\,c_{\theta_3}-c_{\theta_2}\,s_{\theta_1}\,s_{\theta_3}\right)+c_{\theta_5}\,\left(c_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)-s_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)\right)+c_{\theta_6}\,\left(s_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)+c_{\theta_4}\,s_{\theta_1}\,s_{\theta_2}\right)\right)\,\left(\frac{17\,c_{\theta_2}}{50}+c_{\theta_2}\,\left(\frac{37\,c_{\theta_4}}{50}-\frac{37}{50}\right)-\frac{57\,s_{\theta_6}\,\left(c_{\theta_5}\,\left(c_{\theta_2}\,s_{\theta_4}+c_{\theta_3}\,c_{\theta_4}\,s_{\theta_2}\right)-s_{\theta_2}\,s_{\theta_3}\,s_{\theta_5}\right)}{50}+\left(c_{\theta_2}\,c_{\theta_4}-c_{\theta_3}\,s_{\theta_2}\,s_{\theta_4}\right)\,\left(\frac{57\,c_{\theta_6}}{50}-\frac{57}{50}\right)-\frac{37\,c_{\theta_3}\,s_{\theta_2}\,s_{\theta_4}}{50}-\frac{17}{50}\right)\\ 0 & 0 & 0 & \frac{2\,c_{\theta_3}\,s_{\theta_2}}{5} & \frac{2\,s_{\theta_2}\,s_{\theta_3}\,s_{\theta_4}}{5} & \frac{57\,c_{\theta_5}\,\left(c_{\theta_2}\,s_{\theta_4}+c_{\theta_3}\,c_{\theta_4}\,s_{\theta_2}\right)}{50}-\left(c_{\theta_5}\,\left(c_{\theta_1}\,c_{\theta_3}-c_{\theta_2}\,s_{\theta_1}\,s_{\theta_3}\right)-s_{\theta_5}\,\left(c_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)-s_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)\right)\,\left(\frac{17\,c_{\theta_1}\,s_{\theta_2}}{50}-\frac{37\,s_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)}{50}+c_{\theta_1}\,s_{\theta_2}\,\left(\frac{37\,c_{\theta_4}}{50}-\frac{37}{50}\right)\right)-\left(c_{\theta_5}\,\left(c_{\theta_3}\,s_{\theta_1}+c_{\theta_1}\,c_{\theta_2}\,s_{\theta_3}\right)-s_{\theta_5}\,\left(c_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)+c_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)\right)\,\left(\frac{17\,s_{\theta_1}\,s_{\theta_2}}{50}+\frac{37\,s_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)}{50}+s_{\theta_1}\,s_{\theta_2}\,\left(\frac{37\,c_{\theta_4}}{50}-\frac{37}{50}\right)\right)-\frac{57\,s_{\theta_2}\,s_{\theta_3}\,s_{\theta_5}}{50} & \frac{2\,c_{\theta_6}\,s_{\theta_2}\,s_{\theta_3}\,s_{\theta_4}}{5}+\frac{2\,c_{\theta_3}\,s_{\theta_2}\,s_{\theta_5}\,s_{\theta_6}}{5}+\frac{2\,c_{\theta_5}\,s_{\theta_2}\,s_{\theta_3}\,s_{\theta_6}}{5}+\frac{2\,c_{\theta_2}\,s_{\theta_4}\,s_{\theta_5}\,s_{\theta_6}}{5}+\frac{2\,c_{\theta_3}\,c_{\theta_4}\,s_{\theta_2}\,s_{\theta_5}\,s_{\theta_6}}{5}+\frac{2\,c_{\theta_4}\,c_{\theta_5}\,s_{\theta_2}\,s_{\theta_3}\,s_{\theta_6}}{5} \end{array}\right)
$$
\end{document}
编辑:正如评论部分所要求的,这将准确说明我正在寻找的内容。
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\[
\left(
\begin{array}{cccc} c_{\theta_1} & -s_{\theta_2} \\ c_{\theta_2} & -s_{\theta_1} \end{array}
\right)
\]
\begin{align*}
r_{11} &= c_{\theta_1} \\
r_{12} &= -s_{\theta_2} \\
r_{21} &= c_{\theta_2} \\
r_{22} &= -s_{\theta_1}
\end{align*}
\end{document}
答案1
结果显然很差,但我也想不出更好的办法。
\documentclass{article}
\usepackage{amsmath}
\ExplSyntaxOn
\NewDocumentCommand{\tameginormous}{m}
{
\croco_ginormous_tame:n { #1 }
}
\tl_new:N \l__croco_ginormous_matrix_in_tl
\seq_new:N \l__croco_ginormous_matrix_out_seq
\seq_new:N \l__croco_ginormous_rows_seq
\seq_new:N \l__croco_ginormous_col_seq
\cs_new_protected:Nn \croco_ginormous_tame:n
{
\tl_set:Nn \l__croco_ginormous_matrix_in_tl { #1 }
% remove the beginning
\regex_replace_once:nnN { \A .* \{c*\} } { } \l__croco_ginormous_matrix_in_tl
% remove the end
\regex_replace_once:nnN { \c{end} .* \Z } { } \l__croco_ginormous_matrix_in_tl
% remove all \left and \right
\regex_replace_all:nnN { \c{left}|\c{right} } { } \l__croco_ginormous_matrix_in_tl
% split the input at \\
\seq_set_split:NnV \l__croco_ginormous_rows_seq { \\ } \l__croco_ginormous_matrix_in_tl
% now process the thing
\seq_clear:N \l__croco_ginormous_matrix_out_seq
\seq_map_indexed_function:NN \l__croco_ginormous_rows_seq \__croco_ginormous_row:nn
% output
\par
\group_begin:
\linespread{1.5}\selectfont
\raggedright
\setlength{\parindent}{-3em}\setlength{\leftskip}{3em}
\seq_use:Nn \l__croco_ginormous_matrix_out_seq { \par }
\par
\group_end:
}
\cs_new_protected:Nn \__croco_ginormous_row:nn
{% #1 = row index, #2 = row
% split the row at &
\seq_set_split:Nnn \l__croco_ginormous_col_seq { & } { #2 }
\seq_map_indexed_inline:Nn \l__croco_ginormous_col_seq
{
\seq_put_right:Nn \l__croco_ginormous_matrix_out_seq { $ r\sb{#1##1} = ##2 $ }
}
}
\ExplSyntaxOff
\begin{document}
\tameginormous{
\left(\begin{array}{ccccccc} 0 & c_{\theta_1} & s_{\theta_1}\,s_{\theta_2} & c_{\theta_1}\,c_{\theta_3}-c_{\theta_2}\,s_{\theta_1}\,s_{\theta_3} & s_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)+c_{\theta_4}\,s_{\theta_1}\,s_{\theta_2} & c_{\theta_5}\,\left(c_{\theta_1}\,c_{\theta_3}-c_{\theta_2}\,s_{\theta_1}\,s_{\theta_3}\right)-s_{\theta_5}\,\left(c_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)-s_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right) & s_{\theta_6}\,\left(s_{\theta_5}\,\left(c_{\theta_1}\,c_{\theta_3}-c_{\theta_2}\,s_{\theta_1}\,s_{\theta_3}\right)+c_{\theta_5}\,\left(c_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)-s_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)\right)+c_{\theta_6}\,\left(s_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)+c_{\theta_4}\,s_{\theta_1}\,s_{\theta_2}\right)\\ 0 & s_{\theta_1} & -c_{\theta_1}\,s_{\theta_2} & c_{\theta_3}\,s_{\theta_1}+c_{\theta_1}\,c_{\theta_2}\,s_{\theta_3} & s_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)-c_{\theta_1}\,c_{\theta_4}\,s_{\theta_2} & c_{\theta_5}\,\left(c_{\theta_3}\,s_{\theta_1}+c_{\theta_1}\,c_{\theta_2}\,s_{\theta_3}\right)-s_{\theta_5}\,\left(c_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)+c_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right) & s_{\theta_6}\,\left(s_{\theta_5}\,\left(c_{\theta_3}\,s_{\theta_1}+c_{\theta_1}\,c_{\theta_2}\,s_{\theta_3}\right)+c_{\theta_5}\,\left(c_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)+c_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)\right)+c_{\theta_6}\,\left(s_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)-c_{\theta_1}\,c_{\theta_4}\,s_{\theta_2}\right)\\ 1 & 0 & c_{\theta_2} & s_{\theta_2}\,s_{\theta_3} & c_{\theta_2}\,c_{\theta_4}-c_{\theta_3}\,s_{\theta_2}\,s_{\theta_4} & s_{\theta_5}\,\left(c_{\theta_2}\,s_{\theta_4}+c_{\theta_3}\,c_{\theta_4}\,s_{\theta_2}\right)+c_{\theta_5}\,s_{\theta_2}\,s_{\theta_3} & c_{\theta_6}\,\left(c_{\theta_2}\,c_{\theta_4}-c_{\theta_3}\,s_{\theta_2}\,s_{\theta_4}\right)-s_{\theta_6}\,\left(c_{\theta_5}\,\left(c_{\theta_2}\,s_{\theta_4}+c_{\theta_3}\,c_{\theta_4}\,s_{\theta_2}\right)-s_{\theta_2}\,s_{\theta_3}\,s_{\theta_5}\right)\\ 0 & -\frac{17\,s_{\theta_1}}{50} & \frac{17\,c_{\theta_1}\,s_{\theta_2}}{50} & -\frac{2\,c_{\theta_1}\,s_{\theta_3}}{5}-\frac{17\,c_{\theta_3}\,s_{\theta_1}}{50}-\frac{17\,c_{\theta_1}\,c_{\theta_2}\,s_{\theta_3}}{50}-\frac{2\,c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}}{5} & \frac{17\,c_{\theta_1}\,c_{\theta_4}\,s_{\theta_2}}{50}+\frac{2\,c_{\theta_1}\,c_{\theta_3}\,s_{\theta_4}}{5}-\frac{17\,s_{\theta_1}\,s_{\theta_3}\,s_{\theta_4}}{50}+\frac{17\,c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\,s_{\theta_4}}{50}-\frac{2\,c_{\theta_2}\,s_{\theta_1}\,s_{\theta_3}\,s_{\theta_4}}{5} & \left(c_{\theta_5}\,\left(c_{\theta_3}\,s_{\theta_1}+c_{\theta_1}\,c_{\theta_2}\,s_{\theta_3}\right)-s_{\theta_5}\,\left(c_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)+c_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)\right)\,\left(\frac{17\,c_{\theta_2}}{50}+c_{\theta_2}\,\left(\frac{37\,c_{\theta_4}}{50}-\frac{37}{50}\right)-\frac{37\,c_{\theta_3}\,s_{\theta_2}\,s_{\theta_4}}{50}-\frac{17}{50}\right)-\frac{57\,s_{\theta_5}\,\left(c_{\theta_1}\,c_{\theta_3}-c_{\theta_2}\,s_{\theta_1}\,s_{\theta_3}\right)}{50}-\frac{57\,c_{\theta_5}\,\left(c_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)-s_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)}{50}+\left(s_{\theta_5}\,\left(c_{\theta_2}\,s_{\theta_4}+c_{\theta_3}\,c_{\theta_4}\,s_{\theta_2}\right)+c_{\theta_5}\,s_{\theta_2}\,s_{\theta_3}\right)\,\left(\frac{17\,c_{\theta_1}\,s_{\theta_2}}{50}-\frac{37\,s_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)}{50}+c_{\theta_1}\,s_{\theta_2}\,\left(\frac{37\,c_{\theta_4}}{50}-\frac{37}{50}\right)\right) & \left(s_{\theta_6}\,\left(s_{\theta_5}\,\left(c_{\theta_3}\,s_{\theta_1}+c_{\theta_1}\,c_{\theta_2}\,s_{\theta_3}\right)+c_{\theta_5}\,\left(c_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)+c_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)\right)+c_{\theta_6}\,\left(s_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)-c_{\theta_1}\,c_{\theta_4}\,s_{\theta_2}\right)\right)\,\left(\frac{17\,c_{\theta_2}}{50}+c_{\theta_2}\,\left(\frac{37\,c_{\theta_4}}{50}-\frac{37}{50}\right)-\frac{57\,s_{\theta_6}\,\left(c_{\theta_5}\,\left(c_{\theta_2}\,s_{\theta_4}+c_{\theta_3}\,c_{\theta_4}\,s_{\theta_2}\right)-s_{\theta_2}\,s_{\theta_3}\,s_{\theta_5}\right)}{50}+\left(c_{\theta_2}\,c_{\theta_4}-c_{\theta_3}\,s_{\theta_2}\,s_{\theta_4}\right)\,\left(\frac{57\,c_{\theta_6}}{50}-\frac{57}{50}\right)-\frac{37\,c_{\theta_3}\,s_{\theta_2}\,s_{\theta_4}}{50}-\frac{17}{50}\right)-\left(c_{\theta_6}\,\left(c_{\theta_2}\,c_{\theta_4}-c_{\theta_3}\,s_{\theta_2}\,s_{\theta_4}\right)-s_{\theta_6}\,\left(c_{\theta_5}\,\left(c_{\theta_2}\,s_{\theta_4}+c_{\theta_3}\,c_{\theta_4}\,s_{\theta_2}\right)-s_{\theta_2}\,s_{\theta_3}\,s_{\theta_5}\right)\right)\,\left(\left(s_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)-c_{\theta_1}\,c_{\theta_4}\,s_{\theta_2}\right)\,\left(\frac{57\,c_{\theta_6}}{50}-\frac{57}{50}\right)+\frac{37\,s_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)}{50}+\frac{57\,s_{\theta_6}\,\left(s_{\theta_5}\,\left(c_{\theta_3}\,s_{\theta_1}+c_{\theta_1}\,c_{\theta_2}\,s_{\theta_3}\right)+c_{\theta_5}\,\left(c_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)+c_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)\right)}{50}-\frac{17\,c_{\theta_1}\,s_{\theta_2}}{50}-c_{\theta_1}\,s_{\theta_2}\,\left(\frac{37\,c_{\theta_4}}{50}-\frac{37}{50}\right)\right)\\ 0 & \frac{17\,c_{\theta_1}}{50} & \frac{17\,s_{\theta_1}\,s_{\theta_2}}{50} & \frac{17\,c_{\theta_1}\,c_{\theta_3}}{50}-\frac{2\,s_{\theta_1}\,s_{\theta_3}}{5}+\frac{2\,c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}}{5}-\frac{17\,c_{\theta_2}\,s_{\theta_1}\,s_{\theta_3}}{50} & \frac{17\,c_{\theta_4}\,s_{\theta_1}\,s_{\theta_2}}{50}+\frac{17\,c_{\theta_1}\,s_{\theta_3}\,s_{\theta_4}}{50}+\frac{2\,c_{\theta_3}\,s_{\theta_1}\,s_{\theta_4}}{5}+\frac{2\,c_{\theta_1}\,c_{\theta_2}\,s_{\theta_3}\,s_{\theta_4}}{5}+\frac{17\,c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\,s_{\theta_4}}{50} & \left(s_{\theta_5}\,\left(c_{\theta_2}\,s_{\theta_4}+c_{\theta_3}\,c_{\theta_4}\,s_{\theta_2}\right)+c_{\theta_5}\,s_{\theta_2}\,s_{\theta_3}\right)\,\left(\frac{17\,s_{\theta_1}\,s_{\theta_2}}{50}+\frac{37\,s_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)}{50}+s_{\theta_1}\,s_{\theta_2}\,\left(\frac{37\,c_{\theta_4}}{50}-\frac{37}{50}\right)\right)-\frac{57\,s_{\theta_5}\,\left(c_{\theta_3}\,s_{\theta_1}+c_{\theta_1}\,c_{\theta_2}\,s_{\theta_3}\right)}{50}-\frac{57\,c_{\theta_5}\,\left(c_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)+c_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)}{50}-\left(c_{\theta_5}\,\left(c_{\theta_1}\,c_{\theta_3}-c_{\theta_2}\,s_{\theta_1}\,s_{\theta_3}\right)-s_{\theta_5}\,\left(c_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)-s_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)\right)\,\left(\frac{17\,c_{\theta_2}}{50}+c_{\theta_2}\,\left(\frac{37\,c_{\theta_4}}{50}-\frac{37}{50}\right)-\frac{37\,c_{\theta_3}\,s_{\theta_2}\,s_{\theta_4}}{50}-\frac{17}{50}\right) & \left(c_{\theta_6}\,\left(c_{\theta_2}\,c_{\theta_4}-c_{\theta_3}\,s_{\theta_2}\,s_{\theta_4}\right)-s_{\theta_6}\,\left(c_{\theta_5}\,\left(c_{\theta_2}\,s_{\theta_4}+c_{\theta_3}\,c_{\theta_4}\,s_{\theta_2}\right)-s_{\theta_2}\,s_{\theta_3}\,s_{\theta_5}\right)\right)\,\left(\frac{17\,s_{\theta_1}\,s_{\theta_2}}{50}+\frac{37\,s_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)}{50}+\left(s_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)+c_{\theta_4}\,s_{\theta_1}\,s_{\theta_2}\right)\,\left(\frac{57\,c_{\theta_6}}{50}-\frac{57}{50}\right)+\frac{57\,s_{\theta_6}\,\left(s_{\theta_5}\,\left(c_{\theta_1}\,c_{\theta_3}-c_{\theta_2}\,s_{\theta_1}\,s_{\theta_3}\right)+c_{\theta_5}\,\left(c_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)-s_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)\right)}{50}+s_{\theta_1}\,s_{\theta_2}\,\left(\frac{37\,c_{\theta_4}}{50}-\frac{37}{50}\right)\right)-\left(s_{\theta_6}\,\left(s_{\theta_5}\,\left(c_{\theta_1}\,c_{\theta_3}-c_{\theta_2}\,s_{\theta_1}\,s_{\theta_3}\right)+c_{\theta_5}\,\left(c_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)-s_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)\right)+c_{\theta_6}\,\left(s_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)+c_{\theta_4}\,s_{\theta_1}\,s_{\theta_2}\right)\right)\,\left(\frac{17\,c_{\theta_2}}{50}+c_{\theta_2}\,\left(\frac{37\,c_{\theta_4}}{50}-\frac{37}{50}\right)-\frac{57\,s_{\theta_6}\,\left(c_{\theta_5}\,\left(c_{\theta_2}\,s_{\theta_4}+c_{\theta_3}\,c_{\theta_4}\,s_{\theta_2}\right)-s_{\theta_2}\,s_{\theta_3}\,s_{\theta_5}\right)}{50}+\left(c_{\theta_2}\,c_{\theta_4}-c_{\theta_3}\,s_{\theta_2}\,s_{\theta_4}\right)\,\left(\frac{57\,c_{\theta_6}}{50}-\frac{57}{50}\right)-\frac{37\,c_{\theta_3}\,s_{\theta_2}\,s_{\theta_4}}{50}-\frac{17}{50}\right)\\ 0 & 0 & 0 & \frac{2\,c_{\theta_3}\,s_{\theta_2}}{5} & \frac{2\,s_{\theta_2}\,s_{\theta_3}\,s_{\theta_4}}{5} & \frac{57\,c_{\theta_5}\,\left(c_{\theta_2}\,s_{\theta_4}+c_{\theta_3}\,c_{\theta_4}\,s_{\theta_2}\right)}{50}-\left(c_{\theta_5}\,\left(c_{\theta_1}\,c_{\theta_3}-c_{\theta_2}\,s_{\theta_1}\,s_{\theta_3}\right)-s_{\theta_5}\,\left(c_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)-s_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)\right)\,\left(\frac{17\,c_{\theta_1}\,s_{\theta_2}}{50}-\frac{37\,s_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)}{50}+c_{\theta_1}\,s_{\theta_2}\,\left(\frac{37\,c_{\theta_4}}{50}-\frac{37}{50}\right)\right)-\left(c_{\theta_5}\,\left(c_{\theta_3}\,s_{\theta_1}+c_{\theta_1}\,c_{\theta_2}\,s_{\theta_3}\right)-s_{\theta_5}\,\left(c_{\theta_4}\,\left(s_{\theta_1}\,s_{\theta_3}-c_{\theta_1}\,c_{\theta_2}\,c_{\theta_3}\right)+c_{\theta_1}\,s_{\theta_2}\,s_{\theta_4}\right)\right)\,\left(\frac{17\,s_{\theta_1}\,s_{\theta_2}}{50}+\frac{37\,s_{\theta_4}\,\left(c_{\theta_1}\,s_{\theta_3}+c_{\theta_2}\,c_{\theta_3}\,s_{\theta_1}\right)}{50}+s_{\theta_1}\,s_{\theta_2}\,\left(\frac{37\,c_{\theta_4}}{50}-\frac{37}{50}\right)\right)-\frac{57\,s_{\theta_2}\,s_{\theta_3}\,s_{\theta_5}}{50} & \frac{2\,c_{\theta_6}\,s_{\theta_2}\,s_{\theta_3}\,s_{\theta_4}}{5}+\frac{2\,c_{\theta_3}\,s_{\theta_2}\,s_{\theta_5}\,s_{\theta_6}}{5}+\frac{2\,c_{\theta_5}\,s_{\theta_2}\,s_{\theta_3}\,s_{\theta_6}}{5}+\frac{2\,c_{\theta_2}\,s_{\theta_4}\,s_{\theta_5}\,s_{\theta_6}}{5}+\frac{2\,c_{\theta_3}\,c_{\theta_4}\,s_{\theta_2}\,s_{\theta_5}\,s_{\theta_6}}{5}+\frac{2\,c_{\theta_4}\,c_{\theta_5}\,s_{\theta_2}\,s_{\theta_3}\,s_{\theta_6}}{5} \end{array}\right)
}
\end{document}