我收到此错误缺失数字,视为零。> l.31 >{\arraybackslash}p{1.5in}}
我的 MWC 是(使用 springer aps 期刊类别)
\documentclass[pdflatex, sn-aps]{sn-jnl}% American Physical Society (APS) Reference Style
%%%% Standard Packages
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{comment}
\usepackage[center]{caption}
\usepackage{subcaption}
\usepackage{float}
\usepackage[misc]{ifsym}
\usepackage{csquotes}
\usepackage[section]{placeins}
\usepackage{siunitx}
%%<additional latex packages if required can be included here>
\usepackage{amsmath}
\usepackage{graphicx}
%\graphicspath{{./images/}}
%Table packages
\usepackage{booktabs, makecell, multirow, tabularx}
\newcolumntype{L}{>{\raggedright\arraybackslash}X}
\usepackage[figuresright]{rotating}
\setlength{\rotFPtop}{0pt plus 1fil}
\renewcommand{\theadfont}{\bfseries}
\renewcommand{\theadfont}{\footnotesize\bfseries}
\renewcommand\theadgape{}
\begin{document}
%%%BIG TABLE BEGIN
\begin{sidewaystable}
\begin{center}
\begin{minipage}{\textheight}
%\small
\caption{Comparative study on some Fall Detection Systems~[TB-Threshold and ML-Machine Learning based]}
\label{tab:1} % Give a unique label
\begin{tabular*}{>{\raggedright\arraybackslash}p{0.60in} % changed to tabular and first column
>{\raggedright\arraybackslash}p{0.85in}
>{\raggedright\arraybackslash}p{1.1in} % increase width
c
>{\raggedright\arraybackslash}p{0.65in}
c
c
>{\raggedright\arraybackslash}p{1.5in}
>{\arraybackslash}p{1.5in}}
\toprule
\thead{Reference}&\thead{Sensor\\type}& \bfseries Sensor location&\thead{No. of\\ sensors}&\thead{Processing\\location}&\thead{Method}&\thead{Accuracy\\in \%}&\thead{Features}&\thead{Limitations}\\
\midrule\\
\cite{Wang2018}
& Accelerometer, Gyroscope
& External & $>1$ & On board & TB & 77.5
& Fine grained fall detection with good accuracy.
& No text based location, Fall and break of device aspect not considered.\\
\addlinespace
\cite{Abdulaziz2021}
& Triaxial Accelerometer
& External & 1 & On board and Remote
& TB+ML & 99.45
&Killer heuristic optimized AlexNet convolution neural network(KHANCN). Sensor information is initially collected by placing 6 sensors on 14 subjects.
&Fall location and time not available. No real life implementation case study. Fall and break aspect not considered.\\
\addlinespace
\cite{Tsinganos2017}
& Triaxial Accelerometer
& External & $>1$ & On board and remote
& ML & 91.83
&Fall detection and ADL based on KNN classifier\%
&Store \& analyse, no live data, device fall is not considered.\\
\addlinespace
\cite{Boudouane2019}
&Camera
& External & $>1$ & Remote
& ML & 68.33
& Image information is used for fall classification.
&Slow, multiple image capturing device may be required, privacy issues.\\
\addlinespace
\cite{Junior2018}
& Triaxial Accelerometer
& External & $>1$ & Remote
& TB + ML & Unknown
& Threshold analysis, reminder analysis and decision tree algorithm .
& The non-functional aspect of the device after a fall is not considered.\\
\addlinespace
\cite{Silva2018}
& Pressure Sensor
&Integrated in the operator's shoe & $>1$ & remote
& TB & 86
& Good result accuracy and can be implemented in IoT platform.
& The nature of walking surface has a direct impact on the accuracy.\\
\addlinespace
\cite{lee2018real}
& Accelerometer, Gyroscope
&Smartphone in chest pocket & $>1$ & On board and remote
& TB & 92.5
& Smartphone Google API (location), Good accuracy.
& Device location is not suitable for heart patient, Google API is not accurate in remote locations.\\
\addlinespace
\cite{Tong2013}
& MEMS tri-axis accelerometer
&Upper trunk of the body & 1 & Remote
& ML & 100
& Fall detection and prediction using hidden Markov chain.
& Location information as well as fall alike cases are not considered.\\
\addlinespace
\cite{Ruan2015}
& UHF-RFID
&Different locations inside the room & $>1$ & Remote
&TB + ML & 92.45
& Device and location independent fine grained fall detection.
& Not suitable for outdoor monitoring.\\
\addlinespace
Proposed system
& Smartphone accelerometer
&Gender and garment independent, easy to wear phone holder & 1 & Remote
&TB & 94.45
& \multicolumn{2}{p{\dimexpr1.5in+1.5in+2\tabcolsep+\arrayrulewidth}}{
Text based location + SMS, Indoor and outdoor monitoring, Ineffectual device consideration, Non ambulatory, Non self-recovery warning only so number of warnings are less, In real life, the system could reduce the FoF in the PD patients upto 10\%.} \\
\bottomrule
\end{tabular*}
\end{minipage}
\end{center}
\end{sidewaystable}
%%%BIG TABLE END
\end{document}
模板可以是已下载
答案1
您的表格存在许多问题:
- 您
tabular*
应该定义表格宽度,正如@Pieter van Oostrum 在其评论中所说。但是,您可以简单地坚持使用tabular
表格。 - 您的表格太大,无法在一页中显示,如问题所示。要解决此问题,请尝试:
- 减小使用的字体大小
- 减少
\tabcolsep
- 减少列宽
- 对于最后一列,您需要确定单元格中的文本对齐方式
- 你不需要把表格括在
minipage
- 不要
center
使用环境,而要使用命令\centering
表格的可能解决方案可以是:
\documentclass[pdflatex, sn-aps]{sn-jnl}% American Physical Society (APS) Reference Style
%%%% Standard Packages
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{comment}
\usepackage[center]{caption}
\usepackage{subcaption}
\usepackage{float}
\usepackage[misc]{ifsym}
\usepackage{csquotes}
\usepackage[section]{placeins}
\usepackage{siunitx}
%%<additional latex packages if required can be included here>
\usepackage{amsmath}
\usepackage{graphicx}
%\graphicspath{{./images/}}
%Table packages
\usepackage[figuresright]{rotating}
\setlength{\rotFPtop}{0pt plus 1fil}
\usepackage{booktabs, makecell, multirow, tabularx}
\renewcommand{\theadfont}{\footnotesize\bfseries}
\renewcommand\theadgape{}
\newcolumntype{L}{>{\raggedright\arraybackslash}X}
\newcolumntype{P}[1]{>{\raggedright\arraybackslash}p{#1}}
\begin{document}
%%%BIG TABLE BEGIN
\begin{sidewaystable}
\footnotesize
\setlength\tabcolsep{4pt}
\centering
\caption{Comparative study on some Fall Detection Systems~[TB-Threshold and ML-Machine Learning based]}
\label{tab:1} % Give a unique label
\begin{tabular}{@{} P{0.40in}P{0.8in}P{0.85in}
c
P{0.65in}
c c
P{1.2in} P{1.2in}
@{}}
\toprule
\thead[b]{Ref.}
& \thead[b]{Sensor\\type}
& \thead[b]{Sensor\\ location}
& \thead[b]{No. of\\ sensors}
& \thead[b]{Processing\\location}
& \thead[b]{Method}
& \thead[b]{Accuracy\\in \%}
& \thead[b]{Features}
& \thead[b]{Limitations} \\
\midrule
\cite{Wang2018}
& Accelerometer, Gyroscope
& External & $>1$ & On board & TB & 77.5
& Fine grained fall detection with good accuracy.
& No text based location, Fall and break of device aspect not considered.\\
\addlinespace
\cite{Abdulaziz2021}
& Triaxial Accelerometer
& External & 1 & On board and Remote
& TB+ML & 99.45
&Killer heuristic optimized AlexNet convolution neural network(KHANCN). Sensor information is initially collected by placing 6 sensors on 14 subjects.
&Fall location and time not available. No real life implementation case study. Fall and break aspect not considered.\\
\addlinespace
\cite{Tsinganos2017}
& Triaxial Accelerometer
& External & $>1$ & On board and remote
& ML & 91.83
&Fall detection and ADL based on KNN classifier\%
&Store \& analyse, no live data, device fall is not considered.\\
\addlinespace
\cite{Boudouane2019}
&Camera
& External & $>1$ & Remote
& ML & 68.33
& Image information is used for fall classification.
&Slow, multiple image capturing device may be required, privacy issues.\\
\addlinespace
\cite{Junior2018}
& Triaxial Accelerometer
& External & $>1$ & Remote
& TB + ML & Unknown
& Threshold analysis, reminder analysis and decision tree algorithm .
& The non-functional aspect of the device after a fall is not considered.\\
\addlinespace
\cite{Silva2018}
& Pressure Sensor
&Integrated in the operator's shoe & $>1$ & remote
& TB & 86
& Good result accuracy and can be implemented in IoT platform.
& The nature of walking surface has a direct impact on the accuracy.\\
\addlinespace
\cite{lee2018real}
& Accelerometer, Gyroscope
&Smartphone in chest pocket & $>1$ & On board and remote
& TB & 92.5
& Smartphone Google API (location), Good accuracy.
& Device location is not suitable for heart patient, Google API is not accurate in remote locations.\\
\addlinespace
\cite{Tong2013}
& MEMS tri-axis accelerometer
&Upper trunk of the body & 1 & Remote
& ML & 100
& Fall detection and prediction using hidden Markov chain.
& Location information as well as fall alike cases are not considered.\\
\addlinespace
\cite{Ruan2015}
& UHF-RFID
&Different locations inside the room & $>1$ & Remote
&TB + ML & 92.45
& Device and location independent fine grained fall detection.
& Not suitable for outdoor monitoring.\\
\addlinespace
Proposed system
& Smartphone accelerometer
&Gender and garment independent, easy to wear phone holder & 1 & Remote
&TB & 94.45
& \multicolumn{2}{p{\dimexpr2.4in+2\tabcolsep+\arrayrulewidth}}{
Text based location + SMS, Indoor and outdoor monitoring, Ineffectual device consideration, Non ambulatory, Non self-recovery warning only so number of warnings are less, In real life, the system could reduce the FoF in the PD patients upto 10\%.} \\
\bottomrule
\end{tabular}
\end{sidewaystable}
%%%BIG TABLE END
\end{document}
答案2
这里有一个解决方案,它 (a) 采用一个tabularx
环境,将整体宽度设置为\textwidth
,(b) 动态计算第 1、2、3 和 5 列所需的最小宽度,以最大化最后两列的宽度,以及 (c) 允许在需要时对长单词进行连字,从而总体上占用更少的空间。
\documentclass[sn-aps]{sn-jnl}% American Physical Society (APS) Reference Style
%%%% Standard Packages
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{comment}
\usepackage[center]{caption}
\usepackage{subcaption}
\usepackage{float}
\usepackage[misc]{ifsym}
\usepackage{csquotes}
\usepackage[section]{placeins}
\usepackage{siunitx}
%% additional latex packages if required can be included here>
\usepackage{amsmath}
\usepackage{graphicx}
\usepackage{booktabs, makecell, multirow, tabularx}
\usepackage[figuresright]{rotating}
\setlength{\rotFPtop}{0pt plus 1fil}
\renewcommand{\theadfont}{\footnotesize}
\renewcommand\theadgape{}
% New:
\usepackage{ragged2e} % for '\RaggedRight' macro
\usepackage{calc} % for '\widthof' macro
\newcolumntype{P}[1]{>{\RaggedRight\hspace{0pt}}p{#1}}
\newcolumntype{L}{>{\RaggedRight}X}
\begin{document}
\begin{sidewaystable}
\footnotesize % <-- new
\captionsetup{size=footnotesize} % <-- new
\setlength\tabcolsep{3pt} % default: 6pt
\caption{Comparative study on some Fall Detection Systems
[TB-Threshold and ML-Machine Learning based]}
\label{tab:1}
\begin{tabularx}{\textwidth}{ @{} % <-- new
P{\widthof{Proposed}}
P{\widthof{Accelerometer,}}
P{\widthof{Gender and garment,}}
c
P{\widthof{and remote}}
c c
L L @{} }
\toprule
Ref.&
\thead{Sensor\\type}&
\thead{Sensor\\location}&
\thead{No.\ of\\sensors}&
\thead{Processing\\location}&
Method&
\thead{Accuracy\\in \%}&
Features&
Limitations \\
\midrule
\cite{Wang2018}
& Accelerometer, Gyroscope
& External & $>1$ & On board & TB & 77.5
& Fine grained fall detection with good accuracy.
& No text based location, Fall and break of device aspect not considered.\\
\addlinespace
\cite{Abdulaziz2021}
& Triaxial Accelerometer
& External & 1 & On board and remote
& TB+ML & 99.45
& Killer heuristic optimized AlexNet convolution neural network(KHANCN)\@.
Sensor information is initially collected by placing 6 sensors on 14 subjects.
& Fall location and time not available. No real life implementation
case study. Fall and break aspect not considered.\\
\addlinespace
\cite{Tsinganos2017}
& Triaxial Accelerometer
& External & $>1$ & On board and remote
& ML & 91.83
& Fall detection and ADL based on KNN classifier\%
& Store \& analyse, no live data, device fall not considered.\\
\addlinespace
\cite{Boudouane2019}
&Camera
& External & $>1$ & Remote
& ML & 68.33
& Image information is used for fall classification.
&Slow, multiple image capturing device may be required, privacy issues.\\
\addlinespace
\cite{Junior2018}
& Triaxial Accelerometer
& External & $>1$ & Remote
& TB + ML & Unknown
& Threshold analysis, reminder analysis and decision tree algorithm .
& The non-functional aspect of the device after a fall is not considered.\\
\addlinespace
\cite{Silva2018}
& Pressure Sensor
&Integrated in the operator's shoe & $>1$ & remote
& TB & 86
& Good result accuracy and can be implemented in IoT platform.
& The nature of walking surface has a direct impact on the accuracy.\\
\addlinespace
\cite{lee2018real}
& Accelerometer, Gyroscope
& Smartphone in chest pocket & $>1$ & On board and remote
& TB & 92.5
& Smartphone Google API (location), Good accuracy.
& Device location is not suitable for heart patient,
Google API is not accurate in remote locations.\\
\addlinespace
\cite{Tong2013}
& MEMS tri-axis accelerometer
& Upper trunk of the body & 1 & Remote
& ML & 100
& Fall detection and prediction using hidden Markov chain.
& Location information as well as fall alike cases are not considered.\\
\addlinespace
\cite{Ruan2015}
& UHF-RFID
& Different locations inside the room & $>1$ & Remote
& TB + ML & 92.45
& Device and location independent fine grained fall detection.
& Not suitable for outdoor monitoring.\\
\addlinespace
Proposed system
& Smartphone accelerometer
& Gender and garment independent, easy to wear phone holder & 1 & Remote
& TB & 94.45
& \multicolumn{2}{>{\RaggedRight}p{3.1in}}{%
Text based location + SMS, Indoor and outdoor monitoring, Ineffectual
device consideration, Non ambulatory, Non self-recovery warning only
so number of warnings are less, In real life, system could reduce FoF
in PD patients up to 10\%.} \\
\bottomrule
\end{tabularx}
\end{sidewaystable}
\end{document}