如何进一步分解投影仪中的“块”?

如何进一步分解投影仪中的“块”?
\documentclass{beamer}
\mode<presentation>{
    \usetheme{boadilla}
%%  \setbeamercovered{transparent}
    \setbeamercovered{invisible}
    \usefonttheme{professionalfonts} %%% usual maths fonts
}
\beamertemplatenavigationsymbolsempty %% navigation bars
%%%%%%%%%%%%%%%%%%%%%%%%%%%
\setbeamertemplate{theorem}[ams style]
\setbeamertemplate{theorems}[numbered]
\newenvironment{example*}
{\addtocounter{theorem}{-1}\example}
{\endexample}
%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\qiq}{\quad \implies \quad}
\newcommand{\qaq}{\quad \text{and} \quad}
%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%% for vectors
\renewcommand{\vec}[1]{\mathbf{#1}}
\newcommand{\veca}{\vec{a}}
\newcommand{\vecb}{\vec{b}}
\newcommand{\vecc}{\vec{c}}
\newcommand{\veci}{\vec{i}}
\newcommand{\vecj}{\vec{j}}
\newcommand{\veck}{\vec{k}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% content of the slides %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{frame}
%%%%%%%%% Example 2
    \begin{example}
    Find the eigenvalues and corresponding eigenvectors for
    $
    \vec{B}
    =
    \begin{pmatrix}
    3 & 2 & 4 \\
    1 & 2 & 0 \\
    1 & -2 & 1
    \end{pmatrix}
    $.
    \end{example}
%   \begin{block}{Solution:}
%   \pause
    \[
    \begin{aligned}
        \det(\vec{B}-\lambda\vec{I}) &= 0 \\
        \begin{vmatrix}
        3-\lambda & 2 & 4 \\
        1 & 2-\lambda & 0 \\
        1 & -2 & 1-\lambda
        \end{vmatrix}
        &= 0 \\
        (3-\lambda)
        \begin{vmatrix}
        2-\lambda & - \\
        -2 & 1-\lambda
        \end{vmatrix}
        -2
        \begin{vmatrix}
        1 & 0 \\
        1 & 1-\lambda
        \end{vmatrix}
        +4
        \begin{vmatrix}
        1 & 2-\lambda \\
        1 & -2
        \end{vmatrix}
        &= 0 \\
        (3-\lambda)(2-\lambda)(1-\lambda)-2(1-\lambda)+4(-4+\lambda)
        &= 0 \\
        (\lambda+1)(\lambda-3)(\lambda-4) &= 0 \\
        \lambda &= -1,3,4
    \end{aligned}
    \]
    \framebreak
    \[
        \vec{B}x = \lambda x
        \qiq
        \begin{pmatrix}
        3 & 2 & 4 \\
        1 & 2 & 0 \\
        1 & -2 & 1
        \end{pmatrix}
        \begin{pmatrix}
        x \\ y \\ z
        \end{pmatrix}
        =
        \lambda
        \begin{pmatrix}
        x \\ y \\ z
        \end{pmatrix}
        \qiq
        \begin{array}{rcl}
        3x+2y+4z &=& \lambda x \\
        x+2y     &=& \lambda y \\
        x-2y+z   &=& \lambda z
        \end{array}
    \]
    When $\lambda=-1$: $x=-3y$ and $z=\frac{5}{2}y$. 
    An eigenvector is
    $
        \begin{pmatrix}
        -6 \\
        2 \\
        5
        \end{pmatrix}
    $. \\
    When $\lambda=3$: $x=y$ and $y=-2z$. 
    An eigenvector is
    $
        \begin{pmatrix}
        -2 \\ -2 \\ 1
        \end{pmatrix}
    $. \\
    When $\lambda=4$: $x=2y$ and $z=0$. 
    An eigenvector is
    $
        \begin{pmatrix}
        2 \\ 1 \\ 0
        \end{pmatrix}
    $.
%   \end{block}
\end{frame}

\end{document}

解决方案从开始line 47,我希望从中进一步打破它line 80。但是\框架中断似乎不起作用。

做到这一点的最好方法是什么?

答案1

Beamer 块通常不可破坏。但是您可以使用tcolorbox内部主题,用 tcolorboxes 替换普通的 Beamer 块。然后您可以像这样使它们可破坏:

\documentclass{beamer}
\mode<presentation>{
    \usetheme{boadilla}
%%  \setbeamercovered{transparent}
    \setbeamercovered{invisible}
    \usefonttheme{professionalfonts} %%% usual maths fonts
}
\beamertemplatenavigationsymbolsempty %% navigation bars
%%%%%%%%%%%%%%%%%%%%%%%%%%%
\setbeamertemplate{theorem}[ams style]
\setbeamertemplate{theorems}[numbered]
\newenvironment{example*}
{\addtocounter{theorem}{-1}\example}
{\endexample}
%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\qiq}{\quad \implies \quad}
\newcommand{\qaq}{\quad \text{and} \quad}
%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%% for vectors
\renewcommand{\vec}[1]{\mathbf{#1}}
\newcommand{\veca}{\vec{a}}
\newcommand{\vecb}{\vec{b}}
\newcommand{\vecc}{\vec{c}}
\newcommand{\veci}{\vec{i}}
\newcommand{\vecj}{\vec{j}}
\newcommand{\veck}{\vec{k}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% content of the slides %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%

\usepackage[most]{tcolorbox}
\useinnertheme{tcolorbox}
\tcbset{breakable}

\begin{document}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{frame}[allowframebreaks]
%%%%%%%%% Example 2
    \begin{example}
    Find the eigenvalues and corresponding eigenvectors for
    $
    \vec{B}
    =
    \begin{pmatrix}
    3 & 2 & 4 \\
    1 & 2 & 0 \\
    1 & -2 & 1
    \end{pmatrix}
    $.
    \end{example}
    
   \begin{block}{Solution:}
%   \pause
    \[
    \begin{aligned}
        \det(\vec{B}-\lambda\vec{I}) &= 0 \\
        \begin{vmatrix}
        3-\lambda & 2 & 4 \\
        1 & 2-\lambda & 0 \\
        1 & -2 & 1-\lambda
        \end{vmatrix}
        &= 0 \\
        (3-\lambda)
        \begin{vmatrix}
        2-\lambda & - \\
        -2 & 1-\lambda
        \end{vmatrix}
        -2
        \begin{vmatrix}
        1 & 0 \\
        1 & 1-\lambda
        \end{vmatrix}
        +4
        \begin{vmatrix}
        1 & 2-\lambda \\
        1 & -2
        \end{vmatrix}
        &= 0 \\
        (3-\lambda)(2-\lambda)(1-\lambda)-2(1-\lambda)+4(-4+\lambda)
        &= 0 \\
        (\lambda+1)(\lambda-3)(\lambda-4) &= 0 \\
        \lambda &= -1,3,4
    \end{aligned}
    \]
  
    \framebreak
      
    \[
        \vec{B}x = \lambda x
        \qiq
        \begin{pmatrix}
        3 & 2 & 4 \\
        1 & 2 & 0 \\
        1 & -2 & 1
        \end{pmatrix}
        \begin{pmatrix}
        x \\ y \\ z
        \end{pmatrix}
        =
        \lambda
        \begin{pmatrix}
        x \\ y \\ z
        \end{pmatrix}
        \qiq
        \begin{array}{rcl}
        3x+2y+4z &=& \lambda x \\
        x+2y     &=& \lambda y \\
        x-2y+z   &=& \lambda z
        \end{array}
    \]
    When $\lambda=-1$: $x=-3y$ and $z=\frac{5}{2}y$. 
    An eigenvector is
    $
        \begin{pmatrix}
        -6 \\
        2 \\
        5
        \end{pmatrix}
    $. \\
    When $\lambda=3$: $x=y$ and $y=-2z$. 
    An eigenvector is
    $
        \begin{pmatrix}
        -2 \\ -2 \\ 1
        \end{pmatrix}
    $. \\
    When $\lambda=4$: $x=2y$ and $z=0$. 
    An eigenvector is
    $
        \begin{pmatrix}
        2 \\ 1 \\ 0
        \end{pmatrix}
    $.
   \end{block}
\end{frame}

\end{document}

在此处输入图片描述

相关内容