如何旋转两列文章中的长表格?

如何旋转两列文章中的长表格?

我正在尝试实现类似以下文章中的表格的功能: https://www.sciencedirect.com/science/article/pii/S0168169917308803

文章截图

这是一份两栏的 Elsevier 评论,其中包含一些长表格,用于显示已审阅的参考文献和一些描述。我尝试使用 pdflscape、rotatebox、longtable、supertabular、tabularx,但无法使其工作。我正在使用 Overleaf 在线编辑器,我相信我可以从工作示例中自己制作一个基本的水平长表格。非常感谢任何帮助!

答案1

选项1插入适合页面的横向表格。

此示例显示一个旋转后的表格,该表格填满了页面的可用空间。它被收集在框中并旋转。

必须手动填充表格以适合页面,因为是浮点数且无法在框中工作,所以longtable不能使用自动分页符。longable

b

\documentclass[final,3p,twocolumn,authoryear]{elsarticle}

\usepackage{graphicx} % rotatebox
\usepackage{array}
\newcolumntype{L}[1]{>{\footnotesize\raggedright \arraybackslash}p{#1}}
\newlength{\twidth}
\setlength{\twidth}{\dimexpr \textheight+\headheight+\topsep} % total usable page height

\usepackage{kantlipsum} % only for dummy text
%\usepackage{showframe} % use to show the margins

\journal{Computers and Electronics in Agriculture}

\begin{document}

\begin{frontmatter}                 
    \title{The Title}                   
    \author{One Author}         
    \affiliation{organization={},
    addressline={}, 
    city={},
    postcode={}, 
    state={},
    country={}}         
    \begin{abstract}
        %% Text of abstract             
    \end{abstract}
\end{frontmatter}

\section{Introduction }‎‎

1. \kant[1-4]

\clearpage  
    
\rotatebox{90}{%    
\hspace*{\dimexpr-0.8\columnwidth-\columnsep}\begin{minipage}{\textheight}  
\setlength{\tabcolsep}{2pt}
\begin{tabular}{L{3ex} L{0.20\twidth} L{0.35\twidth}L{0.42\twidth}@{}}
    No. & Application in Agriculture&   Remote sensing&     Techniques for data analysis\\
    \hline
    1.&     Soil and vegetation/crop mapping&   Hyperspectral imaging (satellite and airborne), multi‐spectral
    imaging (satellite), synthetic aperture radar (SAR)&    Image fusion, SVM, end-member extraction algorithm, co-polarized phase
    differences (PPD), linear polarizations (HH, VV, HV), distance-based    classification, decision trees, linear mixing models, logistic regression, ANN,     NDVI\\
    2.&     Leaf area index and crop canopy&    Hyperspectral imaging (airborne), multi‐spectral imaging (airborne) & Linear regression analysis, NDVI\\
    3.&     Crop phenology&     Satellite remote sensing (general)& Wavelet-based filtering, Fourier transforms, NDVI\\
    4.& 
    Crop height, estimation of yields,
    fertilizers' effect and biomass& 
    Light Detection and Ranging (LIDAR), hyperspectral and multi-
    spectral imaging, SAR, red-edge camera, thermal infrared& 
    Linear and exponential regression analysis, linear polarizations (VV),
    wavelet-based filtering, vegetation indices (NDVI, ICWSI), ANN\\
    5.& 
    Crop monitoring& 
    Satellite remote sensing (hyperspectral and multi-spectral imaging),
    NIR camera, SAR& 
    Stepwise discriminate analysis (DISCRIM) feature extraction, linear
    regression analysis, co-polarized phase differences (PPD), linear polarizations
    (HH, VV, HV, RR and RL), classification and regression tree analysis\\
    6.& 
    Identification of seeds and
    reorganization of species& 
    Remote sensing in general, cameras and photo-detectors,
    hyperspectral imaging& 
    Principal component analysis, feature extraction, linear regression analysis\\
    7.& 
    Soil and leaf nitrogen content and
    treatment, salinity detection& 
    Hyperspectral and multi-spectral imaging, thermal imaging& 
    Linear and exponential regression analysis\\
    8.& 
    Irrigation& 
    Satellite remote sensing (hyperspectral and multi-spectral imaging),
    red-edge camera, thermal infrared& 
    Image classification techniques (unsupervised clustering, density slicing with
    thresholds), decision trees, linear regression analysis, NDVI\\
    9.& 
    Plants water stress detection and drought
    conditions& 
    Satellite remote sensing (hyperspectral and multi-spectral imaging,
    radar images), thermal imaging, NIR camera, red-edge camera& 
    Fraunhofer Line Depth (FLD) principle, linear regression analysis, NDVI\\
    10.& 
    Water erosion assessment& 
    Satellite remote sensing (optical and radar images), SAR, NIR
    camera& 
    Interferometric SAR image processing, linear and exponential regression
    analysis, contour tracing, linear polarizations (HH, VV)\\
    11.& 
    Pest detection and management& 
    Hyperspectral and multi-spectral imaging, microwave remote
    sensing, thermal camera& 
    Image processing using sample imagery, linear and exponential regression
    analysis, statistical analysis, CEM nonlinear signal processing, NDVI\\
    12.& 
    Weed detection& 
    Remote sensing in general, optical cameras and photo-detectors,
    hyperspectral and multi-spectral imaging& 
    Pixel classification based on k-means clustering and Bayes classifier, feature
    extraction techniques with FFT and GLCM, wavelet-based classification and
    Gabor filtering, genetic algorithms, fuzzy techniques, logistic regression, edge
    detection, color detection, principal component analysis\\
    13.& 
    Herbicide& 
    Remote sensing in general, optical cameras and photo-detectors& 
    Fuzzy techniques, discriminant analysis\\
    14.& 
    Fruit grading& 
    Optical cameras and photo-detectors, monochrome images with
    different illuminations& 
    K-means clustering, image fusion, color histogram techniques, machine
    learning (esp. SVM), Bayesian discriminant analysis, Bayes filtering, linear
    discriminant analysis\\
    15.& 
    Packaged food and food products –
    identification of contaminants, diseases
    or defects, bruise detection& 
    X-ray imaging (or transmitted light), CCD cameras, monochrome
    images with different illuminations, thermal cameras, multi-spectral
    and hyperspectral NIR-based imaging& 
    3D vision, invariance, pattern recognition and image modality, 
    decision trees, fusion, feature extraction techniques with FFT, standard
    Bayesian discriminant analysis, feature analysis, color, shape and geometric
    features using discrimination analysis, pulsed-phase thermography\\
    16.& 
    Crop hail damage& 
    Multi-spectral imaging, polarimetric radar imagery& 
    Linear and exponential regression analysis, unsupervised image classification\\
    17.& 
    Agricultural expansion and
    intensification& 
    Satellite remote sensing in general& 
    Wavelet-based filtering\\
    18.& 
    Greenhouse monitoring& 
    Optical and thermal cameras& 
    Linear and exponential regression analysis, unsupervised classification,
    NDVI, IR thermography\\
    \end{tabular}
\end{minipage}
}
\clearpage


2. \kant[4-6]
\end{document}

选项 2longtable 当表真的很长时 使用。

需要先生成长表,然后将生成的pdf插入到elsarticle

(1)使用此代码longtablelandscape.tex生成longtablelandscape.pdf,长三页。

% File longtablelandscape.tex

\documentclass{article}
\RequirePackage{geometry}
\geometry{%
    paperwidth=210mm,
    paperheight=297mm,
    textheight=622pt,
    textwidth=468pt,
    centering,
    headheight=10pt,
    headsep=12pt,
    footskip=12pt,
    footnotesep=14pt plus 2pt minus 12pt,
}

\RequirePackage{pdflscape}
\RequirePackage{afterpage}
\RequirePackage{longtable}

\RequirePackage{caption}
\RequirePackage{array}

\begin{document}
    
\pagestyle{empty}
\input{landscape_template}
\end{document}

longtable此文件中的名为landscape_template.tex

%%% File landscape_template.tex

\newlength{\twidth}
\setlength{\twidth}{\dimexpr \textheight+\headheight+\topsep} % total usable page height

\newcolumntype{L}[1]{>{\small\raggedright \arraybackslash}p{#1}}

\afterpage{%
    \begin{landscape}% Landscape page
        \appendix           
        \section{Application in Agriculture}            
            \begin{longtable}{L{3ex} L{0.20\twidth} L{0.35\twidth}L{0.42\twidth}@{}}
%               \caption{\Large Dimension I: Transcendental logic} \label{D1} \\                        
            No. & Application in Agriculture&   Remote sensing&     Techniques for data analysis\\ \hline
            \endfirsthead           
            
             1.&     Soil and vegetation/crop mapping&   Hyperspectral imaging (satellite and airborne), multi‐spectral
            imaging (satellite), synthetic aperture radar (SAR)&    Image fusion, SVM, end-member extraction algorithm, co-polarized phase
            differences (PPD), linear polarizations (HH, VV, HV), distance-based    classification, decision trees, linear mixing models, logistic regression, ANN,     NDVI\\
            2.&     Leaf area index and crop canopy&    Hyperspectral imaging (airborne), multi‐spectral imaging (airborne) & Linear regression analysis, NDVI\\
            3.&     Crop phenology&     Satellite remote sensing (general)& Wavelet-based filtering, Fourier transforms, NDVI\\
            4.& 
            Crop height, estimation of yields,
            fertilizers' effect and biomass& 
            Light Detection and Ranging (LIDAR), hyperspectral and multi-
            spectral imaging, SAR, red-edge camera, thermal infrared& 
            Linear and exponential regression analysis, linear polarizations (VV),
            wavelet-based filtering, vegetation indices (NDVI, ICWSI), ANN\\
            5.& 
            Crop monitoring& 
            Satellite remote sensing (hyperspectral and multi-spectral imaging),
            NIR camera, SAR& 
            Stepwise discriminate analysis (DISCRIM) feature extraction, linear
            regression analysis, co-polarized phase differences (PPD), linear polarizations
            (HH, VV, HV, RR and RL), classification and regression tree analysis\\
            6.& 
            Identification of seeds and
            reorganization of species& 
            Remote sensing in general, cameras and photo-detectors,
            hyperspectral imaging& 
            Principal component analysis, feature extraction, linear regression analysis\\
            7.& 
            Soil and leaf nitrogen content and
            treatment, salinity detection& 
            Hyperspectral and multi-spectral imaging, thermal imaging& 
            Linear and exponential regression analysis\\
            8.& 
            Irrigation& 
            Satellite remote sensing (hyperspectral and multi-spectral imaging),
            red-edge camera, thermal infrared& 
            Image classification techniques (unsupervised clustering, density slicing with
            thresholds), decision trees, linear regression analysis, NDVI\\
            9.& 
            Plants water stress detection and drought
            conditions& 
            Satellite remote sensing (hyperspectral and multi-spectral imaging,
            radar images), thermal imaging, NIR camera, red-edge camera& 
            Fraunhofer Line Depth (FLD) principle, linear regression analysis, NDVI\\
            10.& 
            Water erosion assessment& 
            Satellite remote sensing (optical and radar images), SAR, NIR
            camera& 
            Interferometric SAR image processing, linear and exponential regression
            analysis, contour tracing, linear polarizations (HH, VV)\\
            11.& 
            Pest detection and management& 
            Hyperspectral and multi-spectral imaging, microwave remote
            sensing, thermal camera& 
            Image processing using sample imagery, linear and exponential regression
            analysis, statistical analysis, CEM nonlinear signal processing, NDVI\\
            12.& 
            Weed detection& 
            Remote sensing in general, optical cameras and photo-detectors,
            hyperspectral and multi-spectral imaging& 
            Pixel classification based on k-means clustering and Bayes classifier, feature
            extraction techniques with FFT and GLCM, wavelet-based classification and
            Gabor filtering, genetic algorithms, fuzzy techniques, logistic regression, edge
            detection, color detection, principal component analysis\\
            13.& 
            Herbicide& 
            Remote sensing in general, optical cameras and photo-detectors& 
            Fuzzy techniques, discriminant analysis\\
            14.& 
            Fruit grading& 
            Optical cameras and photo-detectors, monochrome images with
            different illuminations& 
            K-means clustering, image fusion, color histogram techniques, machine
            learning (esp. SVM), Bayesian discriminant analysis, Bayes filtering, linear
            discriminant analysis\\
            15.& 
            Packaged food and food products –
            identification of contaminants, diseases
            or defects, bruise detection& 
            X-ray imaging (or transmitted light), CCD cameras, monochrome
            images with different illuminations, thermal cameras, multi-spectral
            and hyperspectral NIR-based imaging& 
            3D vision, invariance, pattern recognition and image modality, 
            decision trees, fusion, feature extraction techniques with FFT, standard
            Bayesian discriminant analysis, feature analysis, color, shape and geometric
            features using discrimination analysis, pulsed-phase thermography\\
            16.& 
            Crop hail damage& 
            Multi-spectral imaging, polarimetric radar imagery& 
            Linear and exponential regression analysis, unsupervised image classification\\
            17.& 
            Agricultural expansion and
            intensification& 
            Satellite remote sensing in general& 
            Wavelet-based filtering\\
            18.& 
            Greenhouse monitoring& 
            Optical and thermal cameras& 
            Linear and exponential regression analysis, unsupervised classification,
            NDVI, IR thermography\\
             19.&     Soil and vegetation/crop mapping&   Hyperspectral imaging (satellite and airborne), multi‐spectral
            imaging (satellite), synthetic aperture radar (SAR)&    Image fusion, SVM, end-member extraction algorithm, co-polarized phase
            differences (PPD), linear polarizations (HH, VV, HV), distance-based    classification, decision trees, linear mixing models, logistic regression, ANN,     NDVI\\
            20.&     Leaf area index and crop canopy&    Hyperspectral imaging (airborne), multi‐spectral imaging (airborne) & Linear regression analysis, NDVI\\
            21.&     Crop phenology&     Satellite remote sensing (general)& Wavelet-based filtering, Fourier transforms, NDVI\\
            22.& 
            Crop height, estimation of yields,
            fertilizers' effect and biomass& 
            Light Detection and Ranging (LIDAR), hyperspectral and multi-
            spectral imaging, SAR, red-edge camera, thermal infrared& 
            Linear and exponential regression analysis, linear polarizations (VV),
            wavelet-based filtering, vegetation indices (NDVI, ICWSI), ANN\\
            23.& 
            Crop monitoring& 
            Satellite remote sensing (hyperspectral and multi-spectral imaging),
            NIR camera, SAR& 
            Stepwise discriminate analysis (DISCRIM) feature extraction, linear
            regression analysis, co-polarized phase differences (PPD), linear polarizations
            (HH, VV, HV, RR and RL), classification and regression tree analysis\\
            24.& 
            Identification of seeds and
            reorganization of species& 
            Remote sensing in general, cameras and photo-detectors,
            hyperspectral imaging& 
            Principal component analysis, feature extraction, linear regression analysis\\
            25.& 
            Soil and leaf nitrogen content and
            treatment, salinity detection& 
            Hyperspectral and multi-spectral imaging, thermal imaging& 
            Linear and exponential regression analysis\\
            26.& 
            Irrigation& 
            Satellite remote sensing (hyperspectral and multi-spectral imaging),
            red-edge camera, thermal infrared& 
            Image classification techniques (unsupervised clustering, density slicing with
            thresholds), decision trees, linear regression analysis, NDVI\\
            27.& 
            Plants water stress detection and drought
            conditions& 
            Satellite remote sensing (hyperspectral and multi-spectral imaging,
            radar images), thermal imaging, NIR camera, red-edge camera& 
            Fraunhofer Line Depth (FLD) principle, linear regression analysis, NDVI\\
            28.& 
            Water erosion assessment& 
            Satellite remote sensing (optical and radar images), SAR, NIR
            camera& 
            Interferometric SAR image processing, linear and exponential regression
            analysis, contour tracing, linear polarizations (HH, VV)\\
            29.& 
            Pest detection and management& 
            Hyperspectral and multi-spectral imaging, microwave remote
            sensing, thermal camera& 
            Image processing using sample imagery, linear and exponential regression
            analysis, statistical analysis, CEM nonlinear signal processing, NDVI\\
            30.& 
            Weed detection& 
            Remote sensing in general, optical cameras and photo-detectors,
            hyperspectral and multi-spectral imaging& 
            Pixel classification based on k-means clustering and Bayes classifier, feature
            extraction techniques with FFT and GLCM, wavelet-based classification and
            Gabor filtering, genetic algorithms, fuzzy techniques, logistic regression, edge
            detection, color detection, principal component analysis\\
            31.& 
            Herbicide& 
            Remote sensing in general, optical cameras and photo-detectors& 
            Fuzzy techniques, discriminant analysis\\
            32.& 
            Fruit grading& 
            Optical cameras and photo-detectors, monochrome images with
            different illuminations& 
            K-means clustering, image fusion, color histogram techniques, machine
            learning (esp. SVM), Bayesian discriminant analysis, Bayes filtering, linear
            discriminant analysis\\
            33.& 
            Packaged food and food products –
            identification of contaminants, diseases
            or defects, bruise detection& 
            X-ray imaging (or transmitted light), CCD cameras, monochrome
            images with different illuminations, thermal cameras, multi-spectral
            and hyperspectral NIR-based imaging& 
            3D vision, invariance, pattern recognition and image modality, 
            decision trees, fusion, feature extraction techniques with FFT, standard
            Bayesian discriminant analysis, feature analysis, color, shape and geometric
            features using discrimination analysis, pulsed-phase thermography\\
            34.& 
            Crop hail damage& 
            Multi-spectral imaging, polarimetric radar imagery& 
            Linear and exponential regression analysis, unsupervised image classification\\
            35.& 
            Agricultural expansion and
            intensification& 
            Satellite remote sensing in general& 
            Wavelet-based filtering\\
            36.& 
            Greenhouse monitoring& 
            Optical and thermal cameras& 
            Linear and exponential regression analysis, unsupervised classification,
            NDVI, IR thermography\\ \hline  
        \end{longtable}%    
    \end{landscape}%
}

(2)将长表插入主文档main.tex

% File main.tex

\documentclass[final,3p,twocolumn,authoryear]{elsarticle}

\usepackage[final]{pdfpages}
\RequirePackage{kantlipsum}

%\usepackage{showframe} % to show the margins

\journal{Computers and Electronics in Agriculture}

\begin{document}
\begin{frontmatter}                 
    \title{The Title}                   
    \author{One Author}         
    \affiliation{organization={},
        addressline={}, 
        city={},
        postcode={}, 
        state={},
        country={}}         
    \begin{abstract}
        %% Text of abstract             
    \end{abstract}
\end{frontmatter}

\section{Introduction }‎‎   
1.  \kant[1-4]  

\onecolumn\includepdf[pages={-},width=\textwidth, angle=90, pagecommand={}]{longtablelandscape.pdf}

\twocolumn 2. \kant[2-6]

\end{document}

这是最终的输出:

A

相关内容