如何让表格继续在下一页?

如何让表格继续在下一页?

这是我的工作示例:

\documentclass{article}
\usepackage[utf8]{inputenc}



\begin{document}
\section{table of model and predictions}

\begin{table}[h]
\begin{tabular}{lllll}
%\begin{longtable}{lllll}
\hline
                           &  &                                                                            &  &                                                                            \\
\multicolumn{5}{c}{expandedsystem}                                                                                                                                                        \\
\multicolumn{1}{c}{}       &  &                                                                            &  &                                                                            \\ \hline
                           &  &                                                                            &  &                                                                            \\
\textbf{Dynamical Systems} &  & Original Systems                                                           &  & System Expanded                                                \\
\textbf{}                  &  &                                                                            &  &                                                                            \\ \hline
                           &  &                                                                            &  &                                                                            \\
Saddle-Node                &  &                                                                            &  & $\dot{\alpha} = 0.8 + 4e-10*t + 3e-3*t^2$                                  \\
                           &  & $\dot{x} = \alpha- x^3$                                                    &  & $\dot{x} = \alpha- x^3$                                                    \\
                           &  &                                                                            &  &                                                                            \\
                           \hline
                           &  &                                                                            &  &                                                                            \\
Pitchfork                  &  &                                                                            &  & $\dot{\alpha} =4.5+2.16t + 3.39t^2$                                        \\
                           &  & $\dot{x} = \alpha- x^2$                                                    &  & $\dot{x} = \alpha- x^2$                                                    \\
                           &  &                                                                            &  &                                                                            \\
                           \hline
                           &  &                                                                            &  &                                                                            \\
Hopf                       &  &                                                                            &  & $\dot{\alpha} =-t+t^2-t^3$                                                 \\
                           &  &                                                                            &  &                                                                            \\
                           &  & $\dot{x}_{1} =\alpha x_{1}-x_{2}-x_{1}\left(x_{1}^{2}+x_{2}^{2}\right)$   &  & $\dot{x}_{1} =\alpha x_{1}-x_{2}-x_{1}\left(x_{1}^{2}+x_{2}^{2}\right)$   \\
                            &  &                                                                            &  &                                                                            \\
                           &  & $\dot{x}_{2} =x_{1}+\alpha x_{2}-x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)$   &  & $\dot{x}_{2} =x_{1}+\alpha x_{2}-x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)$   \\
                           &  &                                                                            &  &                                                                            \\
                           \hline
                           &  &                                                                            &  &                                                                            \\
Lorentz                    &  &                                                                            &  & $\dot{\rho} =1.1 +     0.92t  -0.027 t^2+ 3^{-4}t^3$                       \\
                           &  &                                                                            &  &                                                                            \\
                           &  & $\dot{x}= \sigma(y-x)$                                                     &  & $\dot{x}= \sigma(y-x)$                                                     \\
                            &  &                                                                            &  &                                                                            \\
                           &  & $\dot{y}= x(\rho-z)-y$                                                     &  & $\dot{y}= x(\rho-z)-y$                                                     \\
                           &  &                                                                            &  &                                                                            \\
                           &  & $\dot{z}= x y-\beta z$                                                     &  & $\dot{z}= x y-\beta z$                                                     \\
                           &  &                                                                            &  &                                                                            \\
                           \hline
                           &  &                                                                            &  &                                                                            \\
Van Der Pol                &  &                                                                            &  & $\dot{\alpha} =1.1 +     0.92t  -0.027 t^2+ 3^{-4}t^3$                     \\
                           &  &                                                                            &  &                                                                            \\
                           &  & $\dot{x}= y$                                                               &  & $\dot{x}= y$                                                               \\
                           &  &                                                                            &  &                                                                            \\
                           &  & $\dot{y}= \alpha\left(1-x^{2}\right) y-x$                                  &  & $\dot{y}= \alpha\left(1-x^{2}\right) y-x$                                  \\
                           &  &                                                                            &  &                                                                            \\
                           \hline
                           &  &                                                                            &  &                                                                            \\
Hodgin-Huxley              &  &                                                                            &  & $  \dot{\alpha} = 1.1 +     0.92t  -0.027 t^2+ 3^{-4}t^3$                   \\
                           &  &                                                                            &  &                                                                            \\
                           &  & $\dot{n}= \alpha_{n}\left(V_{m}\right)(1-n)-\beta_{n}\left(V_{m}\right) n$ &  & $\dot{n}= \alpha_{n}\left(V_{m}\right)(1-n)-\beta_{n}\left(V_{m}\right) n$ \\
                           &  &                                                                            &  &                                                                            \\
                           &  & $\dot{m}= \alpha_{m}\left(V_{m}\right)(1-m)-\beta_{m}\left(V_{m}\right) m$ &  & $\dot{m}= \alpha_{m}\left(V_{m}\right)(1-m)-\beta_{m}\left(V_{m}\right) m$ \\
                           &  &                                                                            &  &                                                                            \\
                           &  & $\dot{h}= \alpha_{h}\left(V_{m}\right)(1-h)-\beta_{h}\left(V_{m}\right) h$ &  & $\dot{h}= \alpha_{h}\left(V_{m}\right)(1-h)-\beta_{h}\left(V_{m}\right) h$ \\
                           &  &                                                                            &  &                                                                            \\
                           \hline
                           &  &                                                                            &  &                                                                            \\
Fitzhugh- Nagumo           &  &                                                                            &  & $\dot{\alpha} =   1.1 +     0.92t$                                          \\
                           &  & $\dot{u}= \epsilon g(u) -w + I$                                            &  & $\dot{u}= \epsilon g(u) -w + I$                                            \\
                           &  &                                                                            &  &                                                                            \\
                           &  & $\dot{w}= u - aw$                                                          &  & $\dot{w}= u - aw$                                                          \\
                           &  &                                                                            &  &                                                                            \\
                           \hline
                           &  &                                                                            &  &                                                                            \\
Bistable Toggle Switch     &  &                                                                            &  & $\dot{\alpha} = 1.1 +     0.92t  -0.027 t^2+ 3^{-4}t^3$                     \\
                           &  & $\dot{x}_1 =  \frac{a_1}{1+(x_2)^{n_1}}-d_1x_1$                            &  & $\dot{x}_1 =  \frac{a_1}{1+(x_2)^{n_1}}-d_1x_1$                            \\
                           &  &                                                                            &  &                                                                            \\
                           &  & $\dot{x_2} =  \frac{a_2}{1+(x_1)^{n_2}}-d_2x_2$                            &  & $\dot{x_2} =  \frac{a_2}{1+(x_1)^{n_2}}-d_2x_2$                            \\
                           &  &                                                                            &  &                                                                            \\
                           &  &                                                                            &  &                                                                            \\ \hline
\end{tabular}
\end{table}
%\end{longtable}
%\end{table}




\end{document}

表格太长: 表格不方便地放在页面底部

当我使用 longtable 时,表格意外地显示额外的内容:这是代码:

\documentclass{article}
\usepackage[utf8]{inputenc}



\begin{document}
\section{table of model and predictions}

\begin{longtable}{lllll}
\hline
                           &  &                                                                            &  &                                                                            \\
\multicolumn{5}{c}{expandedsystem}                                                                                                                                                        \\
\multicolumn{1}{c}{}       &  &                                                                            &  &                                                                            \\ \hline
                           &  &                                                                            &  &                                                                            \\
\textbf{Dynamical Systems} &  & Original Systems                                                           &  & System Expanded                                                \\
\textbf{}                  &  &                                                                            &  &                                                                            \\ \hline
                           &  &                                                                            &  &                                                                            \\
Saddle-Node                &  &                                                                            &  & $\dot{\alpha} = 0.8 + 4e-10*t + 3e-3*t^2$                                  \\
                           &  & $\dot{x} = \alpha- x^3$                                                    &  & $\dot{x} = \alpha- x^3$                                                    \\
                           &  &                                                                            &  &                                                                            \\
                           \hline
                           &  &                                                                            &  &                                                                            \\
Pitchfork                  &  &                                                                            &  & $\dot{\alpha} =4.5+2.16t + 3.39t^2$                                        \\
                           &  & $\dot{x} = \alpha- x^2$                                                    &  & $\dot{x} = \alpha- x^2$                                                    \\
                           &  &                                                                            &  &                                                                            \\
                           \hline
                           &  &                                                                            &  &                                                                            \\
Hopf                       &  &                                                                            &  & $\dot{\alpha} =-t+t^2-t^3$                                                 \\
                           &  &                                                                            &  &                                                                            \\
                           &  & $\dot{x}_{1} =\alpha x_{1}-x_{2}-x_{1}\left(x_{1}^{2}+x_{2}^{2}\right)$   &  & $\dot{x}_{1} =\alpha x_{1}-x_{2}-x_{1}\left(x_{1}^{2}+x_{2}^{2}\right)$   \\
                            &  &                                                                            &  &                                                                            \\
                           &  & $\dot{x}_{2} =x_{1}+\alpha x_{2}-x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)$   &  & $\dot{x}_{2} =x_{1}+\alpha x_{2}-x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)$   \\
                           &  &                                                                            &  &                                                                            \\
                           \hline
                           &  &                                                                            &  &                                                                            \\
Lorentz                    &  &                                                                            &  & $\dot{\rho} =1.1 +     0.92t  -0.027 t^2+ 3^{-4}t^3$                       \\
                           &  &                                                                            &  &                                                                            \\
                           &  & $\dot{x}= \sigma(y-x)$                                                     &  & $\dot{x}= \sigma(y-x)$                                                     \\
                            &  &                                                                            &  &                                                                            \\
                           &  & $\dot{y}= x(\rho-z)-y$                                                     &  & $\dot{y}= x(\rho-z)-y$                                                     \\
                           &  &                                                                            &  &                                                                            \\
                           &  & $\dot{z}= x y-\beta z$                                                     &  & $\dot{z}= x y-\beta z$                                                     \\
                           &  &                                                                            &  &                                                                            \\
                           \hline
                           &  &                                                                            &  &                                                                            \\
Van Der Pol                &  &                                                                            &  & $\dot{\alpha} =1.1 +     0.92t  -0.027 t^2+ 3^{-4}t^3$                     \\
                           &  &                                                                            &  &                                                                            \\
                           &  & $\dot{x}= y$                                                               &  & $\dot{x}= y$                                                               \\
                           &  &                                                                            &  &                                                                            \\
                           &  & $\dot{y}= \alpha\left(1-x^{2}\right) y-x$                                  &  & $\dot{y}= \alpha\left(1-x^{2}\right) y-x$                                  \\
                           &  &                                                                            &  &                                                                            \\
                           \hline
                           &  &                                                                            &  &                                                                            \\
Hodgin-Huxley              &  &                                                                            &  & $  \dot{\alpha} = 1.1 +     0.92t  -0.027 t^2+ 3^{-4}t^3$                   \\
                           &  &                                                                            &  &                                                                            \\
                           &  & $\dot{n}= \alpha_{n}\left(V_{m}\right)(1-n)-\beta_{n}\left(V_{m}\right) n$ &  & $\dot{n}= \alpha_{n}\left(V_{m}\right)(1-n)-\beta_{n}\left(V_{m}\right) n$ \\
                           &  &                                                                            &  &                                                                            \\
                           &  & $\dot{m}= \alpha_{m}\left(V_{m}\right)(1-m)-\beta_{m}\left(V_{m}\right) m$ &  & $\dot{m}= \alpha_{m}\left(V_{m}\right)(1-m)-\beta_{m}\left(V_{m}\right) m$ \\
                           &  &                                                                            &  &                                                                            \\
                           &  & $\dot{h}= \alpha_{h}\left(V_{m}\right)(1-h)-\beta_{h}\left(V_{m}\right) h$ &  & $\dot{h}= \alpha_{h}\left(V_{m}\right)(1-h)-\beta_{h}\left(V_{m}\right) h$ \\
                           &  &                                                                            &  &                                                                            \\
                           \hline
                           &  &                                                                            &  &                                                                            \\
Fitzhugh- Nagumo           &  &                                                                            &  & $\dot{\alpha} =   1.1 +     0.92t$                                          \\
                           &  & $\dot{u}= \epsilon g(u) -w + I$                                            &  & $\dot{u}= \epsilon g(u) -w + I$                                            \\
                           &  &                                                                            &  &                                                                            \\
                           &  & $\dot{w}= u - aw$                                                          &  & $\dot{w}= u - aw$                                                          \\
                           &  &                                                                            &  &                                                                            \\
                           \hline
                           &  &                                                                            &  &                                                                            \\
Bistable Toggle Switch     &  &                                                                            &  & $\dot{\alpha} = 1.1 +     0.92t  -0.027 t^2+ 3^{-4}t^3$                     \\
                           &  & $\dot{x}_1 =  \frac{a_1}{1+(x_2)^{n_1}}-d_1x_1$                            &  & $\dot{x}_1 =  \frac{a_1}{1+(x_2)^{n_1}}-d_1x_1$                            \\
                           &  &                                                                            &  &                                                                            \\
                           &  & $\dot{x_2} =  \frac{a_2}{1+(x_1)^{n_2}}-d_2x_2$                            &  & $\dot{x_2} =  \frac{a_2}{1+(x_1)^{n_2}}-d_2x_2$                            \\
                           &  &                                                                            &  &                                                                            \\
                           &  &                                                                            &  &                                                                            \\ \hline
\end{longtable}





\end{document}

表格变化如下: 使用 longtable 时表格显示不良

答案1

您的表格代码太乱了。我尝试清理所有杂乱的内容。希望我正确地弄清楚了表格应该是什么样子。现在表格有三列,其中最后两列处于数学模式。

对于表格,我使用tabularraygeometry(为了使表格\textwidth更宽)包。这样你的表格就可以放在一页中。

编辑: 无论如何,我使用longtblr表格环境是为了确保您的实际表格有更多行(您可以按照与写入其他表格行相同的方式添加)或者它不会从页面顶部开始(参见下面添加的示例)。

\documentclass{article}
\usepackage{geometry}
\usepackage{tabularray}
\UseTblrLibrary{booktabs}

\usepackage{lipsum}

\begin{document}
\lipsum[1-2]

\section{table of model and predictions}
\begingroup
\begin{longtblr}[
caption = {Expanded system}
                ]{colspec = {@{} X[1.2] X[2, l,mode=math]
                                          X[1.8, l,mode=math]
                             @{}},
                  row{1} = {font=\bfseries, c, m, mode=text},
                  row{2-Z} = {rowsep=3pt},
                  rowhead = 1
                 }
    \toprule
Dynamical Systems
    &   Original Systems  
        &   System Expanded         \\
    \midrule
Saddle-Node                
    &   \dot{\alpha} = 0.8 + 4e-10*t + 3e-3*t^2                                  
        &                           \\
    & \dot{x} = \alpha- x^3 
        &   \dot{x} = \alpha- x^3   \\
    \midrule[dashed]
Pitchfork                  
    &   \dot{\alpha} =4.5+2.16t + 3.39t^2   
        &                           \\
    &   \dot{x} = \alpha- x^2                                                    
        &   \dot{x} = \alpha- x^2   \\
    \midrule[dashed]
Hopf                       
    &   \dot{\alpha} =-t+t^2-t^3                                                  
        &                           \\
    &   \dot{x}_{1} = \alpha x_{1}-x_{2}-x_{1}\left(x_{1}^{2}+x_{2}^{2}\right)   
        &   \dot{x}_{1} = \alpha x_{1}-x_{2}-x_{1}\left(x_{1}^{2}+x_{2}^{2}\right)   \\
    &   \dot{x}_{2} = x_{1}+\alpha x_{2}-x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)   
        &   \dot{x}_{2} =x_{1}+\alpha x_{2}-x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)   \\
    \midrule[dashed]
Lorentz                    
    &   \dot{\rho} =1.1 + 0.92t  -0.027 t^2+ 3^{-4}t^3
        &                           \\
    &   \dot{x}= \sigma(y-x)                                                     
        &   \dot{x}= \sigma(y-x)    \\
    &   \dot{y}= x(\rho-z)-y                                                     
        &   \dot{y}= x(\rho-z)-y    \\
    &   \dot{z}= x y-\beta z                                                     
        &   \dot{z}= x y-\beta z    \\
    \midrule[dashed]
Van Der Pol                
    &   \dot{\alpha} =1.1 + 0.92t  -0.027 t^2+ 3^{-4}t^3
        &                           \\
    &   \dot{x}= y                                                               
        & \dot{x}= y                \\
    &   \dot{y}= \alpha\left(1-x^{2}\right) y-x                                  
        &   \dot{y}= \alpha\left(1-x^{2}\right) y-x \\
    \midrule[dashed]
Hodgin-Huxley              
    &   \dot{\alpha} = 1.1 + 0.92t  -0.027 t^2+ 3^{-4}t^3                   
        &                           \\
    &   \dot{n} = \alpha_{n}\left(V_{m}\right)(1-n)-\beta_{n}\left(V_{m}\right) n 
        &   \dot{n} = \alpha_{n}\left(V_{m}\right)(1-n)-\beta_{n}\left(V_{m}\right) n \\
    &   \dot{m} = \alpha_{m}\left(V_{m}\right)(1-m)-\beta_{m}\left(V_{m}\right) m 
        &   \dot{m} = \alpha_{m}\left(V_{m}\right)(1-m)-\beta_{m}\left(V_{m}\right) m \\
    &   \dot{h}= \alpha_{h}\left(V_{m}\right)(1-h)-\beta_{h}\left(V_{m}\right) h 
        & \dot{h}= \alpha_{h}(V_{m})(1-h)-\beta_{h}\left(V_{m}\right) h     \\
    \midrule[dashed]
Fitzhugh - Nagumo           
    &   \dot{\alpha} = 1.1 +  0.92t 
        &                       \\                      
    &   \dot{u}= \epsilon g(u) -w + I                                            
        &   \dot{u}= \epsilon g(u) -w + I   \\
    &   \dot{w}= u - aw 
        &   \dot{w}= u - aw                 \\
    \midrule[dashed]
\SetCell[r=2]{h,l}  Bistable Toggle Switch                                                                       
    &   \dot{\alpha} = 1.1 + 0.92t  -0.027 t^2+ 3^{-4}t^3  
        &                                   \\
    &   \dot{x}_1 = \frac{a_1}{1+(x_2)^{n_1}}-d_1x_1                            
        &   \dot{x}_1 = \frac{a_1}{1+(x_2)^{n_1}}-d_1x_1   \\
    &   \dot{x_2} = \frac{a_2}{1+(x_1)^{n_2}}-d_2x_2
        &   \dot{x_2} =  \frac{a_2}{1+(x_1)^{n_2}}-d_2x_2   \\
    \bottomrule
\end{longtblr}
\endgroup
\end{document}

在此处输入图片描述

答案2

我建议对代码进行一些修改(和简化),基于booktabsmakecell,使代码工作并产生类似的布局。此外,加载geometry可避免过满的行:

    \documentclass{article}
    \usepackage{geometry}
    \usepackage{longtable}
    \usepackage{makecell, booktabs}
    \setlength{\aboverulesep}{3ex}
    \setlength{\belowrulesep}{3ex}
    \renewcommand{\theadfont}{\normalsize\bfseries}
    \usepackage{lipsum}

    \begin{document}
    \section{table of model and predictions}
    \lipsum[11-12]

    \begin{longtable}{lll}
    \toprule
                               & & \\
    \multicolumn{3}{c}{expanded system} \\
    \multicolumn{1}{c}{} & & \\
    \midrule
    \thead{Dynamical\\Systems} & Original Systems & System Expanded \\
    \midrule
    Saddle-Node & & $\dot{\alpha} = 0.8 + 4e-10*t + 3e-3*t^2$ \\
                               & $\dot{x} = \alpha- x^3$ & $\dot{x} = \alpha- x^3$ \\
    \midrule
    Pitchfork & & $\dot{\alpha} =4.5+2.16t + 3.39t^2$ \\
                               & $\dot{x} = \alpha- x^2$ & $\dot{x} = \alpha- x^2$ \\
    \midrule
    Hopf & & $\dot{\alpha} =-t+t^2-t^3$ \\
                               & & \\
                               & $\dot{x}_{1} =\alpha x_{1}-x_{2}-x_{1}\left(x_{1}^{2}+x_{2}^{2}\right)$ & $\dot{x}_{1} =\alpha x_{1}-x_{2}-x_{1}\left(x_{1}^{2}+x_{2}^{2}\right)$ \\
                                & & \\
                               & $\dot{x}_{2} =x_{1}+\alpha x_{2}-x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)$ & $\dot{x}_{2} =x_{1}+\alpha x_{2}-x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)$ \\
    \midrule
    Lorentz & & $\dot{\rho} =1.1 + 0.92t -0.027 t^2+ 3^{-4}t^3$ \\
                               & & \\
                                 & $\dot{x}= \sigma(y-x)$ & $\dot{x}= \sigma(y-x)$ \\
                                & & \\
                               & $\dot{y}= x(\rho-z)-y$ & $\dot{y}= x(\rho-z)-y$ \\
                               & & \\
                               & $\dot{z}= x y-\beta z$ & $\dot{z}= x y-\beta z$ \\
    \midrule
    Van Der Pol & & $\dot{\alpha} =1.1 + 0.92t -0.027 t^2+ 3^{-4}t^3$ \\
                               & & \\
                               & $\dot{x}= y$ & $\dot{x}= y$ \\
                               & & \\
                               & $\dot{y}= \alpha\left(1-x^{2}\right) y-x$ & $\dot{y}= \alpha\left(1-x^{2}\right) y-x$ \\
    \midrule
    Hodgin-Huxley & & $ \dot{\alpha} = 1.1 + 0.92t -0.027 t^2+ 3^{-4}t^3$ \\
                               & & \\
                               & $\dot{n}= \alpha_{n}\left(V_{m}\right)(1-n)-\beta_{n}\left(V_{m}\right) n$ & $\dot{n}= \alpha_{n}\left(V_{m}\right)(1-n)-\beta_{n}\left(V_{m}\right) n$ \\
                               & & \\
                               & $\dot{m}= \alpha_{m}\left(V_{m}\right)(1-m)-\beta_{m}\left(V_{m}\right) m$ & $\dot{m}= \alpha_{m}\left(V_{m}\right)(1-m)-\beta_{m}\left(V_{m}\right) m$ \\
                               & & \\
                               & $\dot{h}= \alpha_{h}\left(V_{m}\right)(1-h)-\beta_{h}\left(V_{m}\right) h$ & $\dot{h}= \alpha_{h}\left(V_{m}\right)(1-h)-\beta_{h}\left(V_{m}\right) h$ \\
    \midrule
    Fitzhugh- Nagumo & & $\dot{\alpha} = 1.1 + 0.92t$ \\
                               & $\dot{u}= \epsilon g(u) -w + I$ & $\dot{u}= \epsilon g(u) -w + I$ \\
                               & & \\
                               & $\dot{w}= u - aw$ & $\dot{w}= u - aw$ \\
    \midrule
    \makecell{Bistable\\ Toggle Switch} & & $\dot{\alpha} = 1.1 + 0.92t -0.027 t^2+ 3^{-4}t^3$ \\
                               & $\dot{x}_1 = \frac{a_1}{1+(x_2)^{n_1}}-d_1x_1$ & $\dot{x}_1 = \frac{a_1}{1+(x_2)^{n_1}}-d_1x_1$ \\
                               \addlinespace[3ex]
                               & $\dot{x_2} = \frac{a_2}{1+(x_1)^{n_2}}-d_2x_2$ & $\dot{x_2} = \frac{a_2}{1+(x_1)^{n_2}}-d_2x_2$ \\
                               \bottomrule
    \end{longtable}

    \lipsum[13]

    \end{document} 

在此处输入图片描述

相关内容