这是我的工作示例:
\documentclass{article}
\usepackage[utf8]{inputenc}
\begin{document}
\section{table of model and predictions}
\begin{table}[h]
\begin{tabular}{lllll}
%\begin{longtable}{lllll}
\hline
& & & & \\
\multicolumn{5}{c}{expandedsystem} \\
\multicolumn{1}{c}{} & & & & \\ \hline
& & & & \\
\textbf{Dynamical Systems} & & Original Systems & & System Expanded \\
\textbf{} & & & & \\ \hline
& & & & \\
Saddle-Node & & & & $\dot{\alpha} = 0.8 + 4e-10*t + 3e-3*t^2$ \\
& & $\dot{x} = \alpha- x^3$ & & $\dot{x} = \alpha- x^3$ \\
& & & & \\
\hline
& & & & \\
Pitchfork & & & & $\dot{\alpha} =4.5+2.16t + 3.39t^2$ \\
& & $\dot{x} = \alpha- x^2$ & & $\dot{x} = \alpha- x^2$ \\
& & & & \\
\hline
& & & & \\
Hopf & & & & $\dot{\alpha} =-t+t^2-t^3$ \\
& & & & \\
& & $\dot{x}_{1} =\alpha x_{1}-x_{2}-x_{1}\left(x_{1}^{2}+x_{2}^{2}\right)$ & & $\dot{x}_{1} =\alpha x_{1}-x_{2}-x_{1}\left(x_{1}^{2}+x_{2}^{2}\right)$ \\
& & & & \\
& & $\dot{x}_{2} =x_{1}+\alpha x_{2}-x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)$ & & $\dot{x}_{2} =x_{1}+\alpha x_{2}-x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)$ \\
& & & & \\
\hline
& & & & \\
Lorentz & & & & $\dot{\rho} =1.1 + 0.92t -0.027 t^2+ 3^{-4}t^3$ \\
& & & & \\
& & $\dot{x}= \sigma(y-x)$ & & $\dot{x}= \sigma(y-x)$ \\
& & & & \\
& & $\dot{y}= x(\rho-z)-y$ & & $\dot{y}= x(\rho-z)-y$ \\
& & & & \\
& & $\dot{z}= x y-\beta z$ & & $\dot{z}= x y-\beta z$ \\
& & & & \\
\hline
& & & & \\
Van Der Pol & & & & $\dot{\alpha} =1.1 + 0.92t -0.027 t^2+ 3^{-4}t^3$ \\
& & & & \\
& & $\dot{x}= y$ & & $\dot{x}= y$ \\
& & & & \\
& & $\dot{y}= \alpha\left(1-x^{2}\right) y-x$ & & $\dot{y}= \alpha\left(1-x^{2}\right) y-x$ \\
& & & & \\
\hline
& & & & \\
Hodgin-Huxley & & & & $ \dot{\alpha} = 1.1 + 0.92t -0.027 t^2+ 3^{-4}t^3$ \\
& & & & \\
& & $\dot{n}= \alpha_{n}\left(V_{m}\right)(1-n)-\beta_{n}\left(V_{m}\right) n$ & & $\dot{n}= \alpha_{n}\left(V_{m}\right)(1-n)-\beta_{n}\left(V_{m}\right) n$ \\
& & & & \\
& & $\dot{m}= \alpha_{m}\left(V_{m}\right)(1-m)-\beta_{m}\left(V_{m}\right) m$ & & $\dot{m}= \alpha_{m}\left(V_{m}\right)(1-m)-\beta_{m}\left(V_{m}\right) m$ \\
& & & & \\
& & $\dot{h}= \alpha_{h}\left(V_{m}\right)(1-h)-\beta_{h}\left(V_{m}\right) h$ & & $\dot{h}= \alpha_{h}\left(V_{m}\right)(1-h)-\beta_{h}\left(V_{m}\right) h$ \\
& & & & \\
\hline
& & & & \\
Fitzhugh- Nagumo & & & & $\dot{\alpha} = 1.1 + 0.92t$ \\
& & $\dot{u}= \epsilon g(u) -w + I$ & & $\dot{u}= \epsilon g(u) -w + I$ \\
& & & & \\
& & $\dot{w}= u - aw$ & & $\dot{w}= u - aw$ \\
& & & & \\
\hline
& & & & \\
Bistable Toggle Switch & & & & $\dot{\alpha} = 1.1 + 0.92t -0.027 t^2+ 3^{-4}t^3$ \\
& & $\dot{x}_1 = \frac{a_1}{1+(x_2)^{n_1}}-d_1x_1$ & & $\dot{x}_1 = \frac{a_1}{1+(x_2)^{n_1}}-d_1x_1$ \\
& & & & \\
& & $\dot{x_2} = \frac{a_2}{1+(x_1)^{n_2}}-d_2x_2$ & & $\dot{x_2} = \frac{a_2}{1+(x_1)^{n_2}}-d_2x_2$ \\
& & & & \\
& & & & \\ \hline
\end{tabular}
\end{table}
%\end{longtable}
%\end{table}
\end{document}
当我使用 longtable 时,表格意外地显示额外的内容:这是代码:
\documentclass{article}
\usepackage[utf8]{inputenc}
\begin{document}
\section{table of model and predictions}
\begin{longtable}{lllll}
\hline
& & & & \\
\multicolumn{5}{c}{expandedsystem} \\
\multicolumn{1}{c}{} & & & & \\ \hline
& & & & \\
\textbf{Dynamical Systems} & & Original Systems & & System Expanded \\
\textbf{} & & & & \\ \hline
& & & & \\
Saddle-Node & & & & $\dot{\alpha} = 0.8 + 4e-10*t + 3e-3*t^2$ \\
& & $\dot{x} = \alpha- x^3$ & & $\dot{x} = \alpha- x^3$ \\
& & & & \\
\hline
& & & & \\
Pitchfork & & & & $\dot{\alpha} =4.5+2.16t + 3.39t^2$ \\
& & $\dot{x} = \alpha- x^2$ & & $\dot{x} = \alpha- x^2$ \\
& & & & \\
\hline
& & & & \\
Hopf & & & & $\dot{\alpha} =-t+t^2-t^3$ \\
& & & & \\
& & $\dot{x}_{1} =\alpha x_{1}-x_{2}-x_{1}\left(x_{1}^{2}+x_{2}^{2}\right)$ & & $\dot{x}_{1} =\alpha x_{1}-x_{2}-x_{1}\left(x_{1}^{2}+x_{2}^{2}\right)$ \\
& & & & \\
& & $\dot{x}_{2} =x_{1}+\alpha x_{2}-x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)$ & & $\dot{x}_{2} =x_{1}+\alpha x_{2}-x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)$ \\
& & & & \\
\hline
& & & & \\
Lorentz & & & & $\dot{\rho} =1.1 + 0.92t -0.027 t^2+ 3^{-4}t^3$ \\
& & & & \\
& & $\dot{x}= \sigma(y-x)$ & & $\dot{x}= \sigma(y-x)$ \\
& & & & \\
& & $\dot{y}= x(\rho-z)-y$ & & $\dot{y}= x(\rho-z)-y$ \\
& & & & \\
& & $\dot{z}= x y-\beta z$ & & $\dot{z}= x y-\beta z$ \\
& & & & \\
\hline
& & & & \\
Van Der Pol & & & & $\dot{\alpha} =1.1 + 0.92t -0.027 t^2+ 3^{-4}t^3$ \\
& & & & \\
& & $\dot{x}= y$ & & $\dot{x}= y$ \\
& & & & \\
& & $\dot{y}= \alpha\left(1-x^{2}\right) y-x$ & & $\dot{y}= \alpha\left(1-x^{2}\right) y-x$ \\
& & & & \\
\hline
& & & & \\
Hodgin-Huxley & & & & $ \dot{\alpha} = 1.1 + 0.92t -0.027 t^2+ 3^{-4}t^3$ \\
& & & & \\
& & $\dot{n}= \alpha_{n}\left(V_{m}\right)(1-n)-\beta_{n}\left(V_{m}\right) n$ & & $\dot{n}= \alpha_{n}\left(V_{m}\right)(1-n)-\beta_{n}\left(V_{m}\right) n$ \\
& & & & \\
& & $\dot{m}= \alpha_{m}\left(V_{m}\right)(1-m)-\beta_{m}\left(V_{m}\right) m$ & & $\dot{m}= \alpha_{m}\left(V_{m}\right)(1-m)-\beta_{m}\left(V_{m}\right) m$ \\
& & & & \\
& & $\dot{h}= \alpha_{h}\left(V_{m}\right)(1-h)-\beta_{h}\left(V_{m}\right) h$ & & $\dot{h}= \alpha_{h}\left(V_{m}\right)(1-h)-\beta_{h}\left(V_{m}\right) h$ \\
& & & & \\
\hline
& & & & \\
Fitzhugh- Nagumo & & & & $\dot{\alpha} = 1.1 + 0.92t$ \\
& & $\dot{u}= \epsilon g(u) -w + I$ & & $\dot{u}= \epsilon g(u) -w + I$ \\
& & & & \\
& & $\dot{w}= u - aw$ & & $\dot{w}= u - aw$ \\
& & & & \\
\hline
& & & & \\
Bistable Toggle Switch & & & & $\dot{\alpha} = 1.1 + 0.92t -0.027 t^2+ 3^{-4}t^3$ \\
& & $\dot{x}_1 = \frac{a_1}{1+(x_2)^{n_1}}-d_1x_1$ & & $\dot{x}_1 = \frac{a_1}{1+(x_2)^{n_1}}-d_1x_1$ \\
& & & & \\
& & $\dot{x_2} = \frac{a_2}{1+(x_1)^{n_2}}-d_2x_2$ & & $\dot{x_2} = \frac{a_2}{1+(x_1)^{n_2}}-d_2x_2$ \\
& & & & \\
& & & & \\ \hline
\end{longtable}
\end{document}
答案1
您的表格代码太乱了。我尝试清理所有杂乱的内容。希望我正确地弄清楚了表格应该是什么样子。现在表格有三列,其中最后两列处于数学模式。
对于表格,我使用tabularray
和geometry
(为了使表格\textwidth
更宽)包。这样你的表格就可以放在一页中。
编辑:
无论如何,我使用longtblr
表格环境是为了确保您的实际表格有更多行(您可以按照与写入其他表格行相同的方式添加)或者它不会从页面顶部开始(参见下面添加的示例)。
\documentclass{article}
\usepackage{geometry}
\usepackage{tabularray}
\UseTblrLibrary{booktabs}
\usepackage{lipsum}
\begin{document}
\lipsum[1-2]
\section{table of model and predictions}
\begingroup
\begin{longtblr}[
caption = {Expanded system}
]{colspec = {@{} X[1.2] X[2, l,mode=math]
X[1.8, l,mode=math]
@{}},
row{1} = {font=\bfseries, c, m, mode=text},
row{2-Z} = {rowsep=3pt},
rowhead = 1
}
\toprule
Dynamical Systems
& Original Systems
& System Expanded \\
\midrule
Saddle-Node
& \dot{\alpha} = 0.8 + 4e-10*t + 3e-3*t^2
& \\
& \dot{x} = \alpha- x^3
& \dot{x} = \alpha- x^3 \\
\midrule[dashed]
Pitchfork
& \dot{\alpha} =4.5+2.16t + 3.39t^2
& \\
& \dot{x} = \alpha- x^2
& \dot{x} = \alpha- x^2 \\
\midrule[dashed]
Hopf
& \dot{\alpha} =-t+t^2-t^3
& \\
& \dot{x}_{1} = \alpha x_{1}-x_{2}-x_{1}\left(x_{1}^{2}+x_{2}^{2}\right)
& \dot{x}_{1} = \alpha x_{1}-x_{2}-x_{1}\left(x_{1}^{2}+x_{2}^{2}\right) \\
& \dot{x}_{2} = x_{1}+\alpha x_{2}-x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)
& \dot{x}_{2} =x_{1}+\alpha x_{2}-x_{2}\left(x_{1}^{2}+x_{2}^{2}\right) \\
\midrule[dashed]
Lorentz
& \dot{\rho} =1.1 + 0.92t -0.027 t^2+ 3^{-4}t^3
& \\
& \dot{x}= \sigma(y-x)
& \dot{x}= \sigma(y-x) \\
& \dot{y}= x(\rho-z)-y
& \dot{y}= x(\rho-z)-y \\
& \dot{z}= x y-\beta z
& \dot{z}= x y-\beta z \\
\midrule[dashed]
Van Der Pol
& \dot{\alpha} =1.1 + 0.92t -0.027 t^2+ 3^{-4}t^3
& \\
& \dot{x}= y
& \dot{x}= y \\
& \dot{y}= \alpha\left(1-x^{2}\right) y-x
& \dot{y}= \alpha\left(1-x^{2}\right) y-x \\
\midrule[dashed]
Hodgin-Huxley
& \dot{\alpha} = 1.1 + 0.92t -0.027 t^2+ 3^{-4}t^3
& \\
& \dot{n} = \alpha_{n}\left(V_{m}\right)(1-n)-\beta_{n}\left(V_{m}\right) n
& \dot{n} = \alpha_{n}\left(V_{m}\right)(1-n)-\beta_{n}\left(V_{m}\right) n \\
& \dot{m} = \alpha_{m}\left(V_{m}\right)(1-m)-\beta_{m}\left(V_{m}\right) m
& \dot{m} = \alpha_{m}\left(V_{m}\right)(1-m)-\beta_{m}\left(V_{m}\right) m \\
& \dot{h}= \alpha_{h}\left(V_{m}\right)(1-h)-\beta_{h}\left(V_{m}\right) h
& \dot{h}= \alpha_{h}(V_{m})(1-h)-\beta_{h}\left(V_{m}\right) h \\
\midrule[dashed]
Fitzhugh - Nagumo
& \dot{\alpha} = 1.1 + 0.92t
& \\
& \dot{u}= \epsilon g(u) -w + I
& \dot{u}= \epsilon g(u) -w + I \\
& \dot{w}= u - aw
& \dot{w}= u - aw \\
\midrule[dashed]
\SetCell[r=2]{h,l} Bistable Toggle Switch
& \dot{\alpha} = 1.1 + 0.92t -0.027 t^2+ 3^{-4}t^3
& \\
& \dot{x}_1 = \frac{a_1}{1+(x_2)^{n_1}}-d_1x_1
& \dot{x}_1 = \frac{a_1}{1+(x_2)^{n_1}}-d_1x_1 \\
& \dot{x_2} = \frac{a_2}{1+(x_1)^{n_2}}-d_2x_2
& \dot{x_2} = \frac{a_2}{1+(x_1)^{n_2}}-d_2x_2 \\
\bottomrule
\end{longtblr}
\endgroup
\end{document}
答案2
我建议对代码进行一些修改(和简化),基于booktabs
和makecell
,使代码工作并产生类似的布局。此外,加载geometry
可避免过满的行:
\documentclass{article}
\usepackage{geometry}
\usepackage{longtable}
\usepackage{makecell, booktabs}
\setlength{\aboverulesep}{3ex}
\setlength{\belowrulesep}{3ex}
\renewcommand{\theadfont}{\normalsize\bfseries}
\usepackage{lipsum}
\begin{document}
\section{table of model and predictions}
\lipsum[11-12]
\begin{longtable}{lll}
\toprule
& & \\
\multicolumn{3}{c}{expanded system} \\
\multicolumn{1}{c}{} & & \\
\midrule
\thead{Dynamical\\Systems} & Original Systems & System Expanded \\
\midrule
Saddle-Node & & $\dot{\alpha} = 0.8 + 4e-10*t + 3e-3*t^2$ \\
& $\dot{x} = \alpha- x^3$ & $\dot{x} = \alpha- x^3$ \\
\midrule
Pitchfork & & $\dot{\alpha} =4.5+2.16t + 3.39t^2$ \\
& $\dot{x} = \alpha- x^2$ & $\dot{x} = \alpha- x^2$ \\
\midrule
Hopf & & $\dot{\alpha} =-t+t^2-t^3$ \\
& & \\
& $\dot{x}_{1} =\alpha x_{1}-x_{2}-x_{1}\left(x_{1}^{2}+x_{2}^{2}\right)$ & $\dot{x}_{1} =\alpha x_{1}-x_{2}-x_{1}\left(x_{1}^{2}+x_{2}^{2}\right)$ \\
& & \\
& $\dot{x}_{2} =x_{1}+\alpha x_{2}-x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)$ & $\dot{x}_{2} =x_{1}+\alpha x_{2}-x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)$ \\
\midrule
Lorentz & & $\dot{\rho} =1.1 + 0.92t -0.027 t^2+ 3^{-4}t^3$ \\
& & \\
& $\dot{x}= \sigma(y-x)$ & $\dot{x}= \sigma(y-x)$ \\
& & \\
& $\dot{y}= x(\rho-z)-y$ & $\dot{y}= x(\rho-z)-y$ \\
& & \\
& $\dot{z}= x y-\beta z$ & $\dot{z}= x y-\beta z$ \\
\midrule
Van Der Pol & & $\dot{\alpha} =1.1 + 0.92t -0.027 t^2+ 3^{-4}t^3$ \\
& & \\
& $\dot{x}= y$ & $\dot{x}= y$ \\
& & \\
& $\dot{y}= \alpha\left(1-x^{2}\right) y-x$ & $\dot{y}= \alpha\left(1-x^{2}\right) y-x$ \\
\midrule
Hodgin-Huxley & & $ \dot{\alpha} = 1.1 + 0.92t -0.027 t^2+ 3^{-4}t^3$ \\
& & \\
& $\dot{n}= \alpha_{n}\left(V_{m}\right)(1-n)-\beta_{n}\left(V_{m}\right) n$ & $\dot{n}= \alpha_{n}\left(V_{m}\right)(1-n)-\beta_{n}\left(V_{m}\right) n$ \\
& & \\
& $\dot{m}= \alpha_{m}\left(V_{m}\right)(1-m)-\beta_{m}\left(V_{m}\right) m$ & $\dot{m}= \alpha_{m}\left(V_{m}\right)(1-m)-\beta_{m}\left(V_{m}\right) m$ \\
& & \\
& $\dot{h}= \alpha_{h}\left(V_{m}\right)(1-h)-\beta_{h}\left(V_{m}\right) h$ & $\dot{h}= \alpha_{h}\left(V_{m}\right)(1-h)-\beta_{h}\left(V_{m}\right) h$ \\
\midrule
Fitzhugh- Nagumo & & $\dot{\alpha} = 1.1 + 0.92t$ \\
& $\dot{u}= \epsilon g(u) -w + I$ & $\dot{u}= \epsilon g(u) -w + I$ \\
& & \\
& $\dot{w}= u - aw$ & $\dot{w}= u - aw$ \\
\midrule
\makecell{Bistable\\ Toggle Switch} & & $\dot{\alpha} = 1.1 + 0.92t -0.027 t^2+ 3^{-4}t^3$ \\
& $\dot{x}_1 = \frac{a_1}{1+(x_2)^{n_1}}-d_1x_1$ & $\dot{x}_1 = \frac{a_1}{1+(x_2)^{n_1}}-d_1x_1$ \\
\addlinespace[3ex]
& $\dot{x_2} = \frac{a_2}{1+(x_1)^{n_2}}-d_2x_2$ & $\dot{x_2} = \frac{a_2}{1+(x_1)^{n_2}}-d_2x_2$ \\
\bottomrule
\end{longtable}
\lipsum[13]
\end{document}