问题描述
我的方程很长,它们不会从一列转到下一列,这会扰乱论文的布局,留下太多不必要的空间。我该怎么办?我试过了\allowdisplayreaks
。但没用。
梅威瑟:
\allowdisplaybreaks
\begin{equation} \tag{41} \label{41}
\begin{split}
\mathbb{E}\{\bigtriangleup{V}(\tilde{\mathrm{e}}_{i,k})\}&= \mathbb{E}\{ \displaystyle{\sum \limits_{i=1}^{N}}
\{\tilde{\mathrm{e}}_{i,k}^T\mathrm{S}_i^TP_i\mathrm{S}_i\tilde{\mathrm{e}}_{i,k} +\tilde{\mathrm{e}}_{i,k}^T\mathrm{S}_i^TP_i\Phi_1\tilde{\mathrm{e}}_k \\&\mspace{20mu}+\tilde{\mathrm{e}}_{i,k}^T\mathrm{S}_i^TP_i\Psi(\tilde{\mathrm{e}}_{i,k}, \rho_k)
\\&\mspace{20mu}- \tilde{\mathrm{e}}_{i,k}^T\mathrm{S}_i^TP_iL_i\zeta_i(\tilde{x}_{i,k}, \tau_k)
\\&\mspace{20mu}+\tilde{\mathrm{e}}_{i,k}^T\mathrm{S}_i^TP_i\bar{\mathrm{B}}\mathrm{w}_k
- \tilde{\mathrm{e}}_{i,k}^T\mathrm{S}_i^TP_iL_i\mathrm{D}_i\mathrm{v}_{i,k}
\\&\mspace{20mu}+ \tilde{\mathrm{e}}_{k}^{T}\Phi_1^{T}P_iS_i\tilde{\mathrm{e}}_{i,k}
+ \tilde{\mathrm{e}}_k^T\Phi_1^TP_i\Phi_1\tilde{\mathrm{e}}_k
\\&\mspace{20mu}+ \tilde{\mathrm{e}}_k^T\Phi_1^TP_i\Psi(\tilde{\mathrm{e}}_{i,k}, \rho_k)
\\&\mspace{20mu}- \tilde{\mathrm{e}}_k^T\Phi_1^TP_iL_i\zeta_i(\tilde{x}_{i,k}, \tau_k)
\\&\mspace{20mu}+\tilde{\mathrm{e}}_k^T\Phi_1^TP_i\bar{\mathrm{B}}\mathrm{w}_k
-\tilde{\mathrm{e}}_k^T\Phi_1^TP_iL_i\mathrm{D}_i\mathrm{v}_{i,k}
\\&\mspace{20mu}+\Psi^T(\tilde{\mathrm{e}}_{i,k}, \rho_k)P_i\mathrm{S}_i\tilde{\mathrm{e}}_{i,k}
\\&\mspace{20mu}+\Psi^T(\tilde{\mathrm{e}}_{i,k}, \rho_k)P_i\Phi_1\tilde{\mathrm{e}}_k
\\&\mspace{20mu}+\Psi^T(\tilde{\mathrm{e}}_{i,k}, \rho_k)P_i\Psi(\tilde{\mathrm{e}}_{i,k}, \rho_k)
\\&\mspace{20mu}- \Psi^T(\tilde{\mathrm{e}}_{i,k}, \rho_k)P_iL_i\zeta_i(\tilde{x}_{i,k}, \tau_k)
\\&\mspace{20mu}+\Psi^T(\tilde{\mathrm{e}}_{i,k}, \rho_k)P_i\bar{\mathrm{B}}\mathrm{w}_k
\\&\mspace{20mu}-\Psi^T(\tilde{\mathrm{e}}_{i,k}, \rho_k)P_iL_i\mathrm{D}_i\mathrm{v}_{i,k}
\\&\mspace{20mu}-\zeta_i^T(\tilde{x}_{i,k}, \tau_k)L_i^TP_i\mathrm{S}_i\tilde{\mathrm{e}}_{i,k}
\\&\mspace{20mu}-\zeta_i^T(\tilde{x}_{i,k}, \tau_k)L_i^TP_i\Phi_1\tilde{\mathrm{e}}_k
\\&\mspace{20mu}-\zeta_i^T(\tilde{x}_{i,k}, \tau_k)L_i^TP_i\Psi(\tilde{\mathrm{e}}_{i,k}, \rho_k)
\\&\mspace{20mu}+\zeta_i^T(\tilde{x}_{i,k}, \tau_k)L_i^TP_iL_i\zeta_i(\tilde{x}_{i,k}, \tau_k)
\\&\mspace{20mu}- \zeta_i^T(\tilde{x}_{i,k}, \tau_k)L_i^TP_i\bar{\mathrm{B}}\mathrm{w}_k
\\&\mspace{20mu}+ \zeta_i^T(\tilde{x}_{i,k}, \tau_k)L_i^TP_iL_i\mathrm{D}_i\mathrm{v}_{i,k}
\\&\mspace{20mu}+ \mathrm{w}_k^T\bar{\mathrm{B}}^TP_i\mathrm{S}_i\tilde{\mathrm{e}}_{i,k}
+ \mathrm{w}_k^T\bar{\mathrm{B}}^TP_i\Phi_1\tilde{\mathrm{e}}_k
\\&\mspace{20mu}+ \mathrm{w}_k^T\bar{\mathrm{B}}^TP_i\Psi(\tilde{\mathrm{e}}_{i,k}, \rho_k)
\\&\mspace{20mu}- \mathrm{w}_k^T\bar{\mathrm{B}}^TP_iL_i\zeta_i(\tilde{x}_{i,k}, \tau_k)
\\&\mspace{20mu}+ \mathrm{w}_k^T\bar{\mathrm{B}}^TP_i\bar{\mathrm{B}}\mathrm{w}_k
-\mathrm{w}_k^T\bar{\mathrm{B}}^TP_iL_i\mathrm{D}_i\mathrm{v}_{i,k}
\\&\mspace{20mu}-\mathrm{v}_{i,k}\mathrm{D}_i^TL_i^TP_i\mathrm{S}_i\tilde{\mathrm{e}}_{i,k}
-\mathrm{v}_{i,k}\mathrm{D}_i^TL_i^TP_i\Phi_1\tilde{\mathrm{e}}_k
\\&\mspace{20mu}-\mathrm{v}_{i,k}\mathrm{D}_i^TL_i^TP_i\Psi(\tilde{\mathrm{e}}_{i,k}, \rho_k)
\\&\mspace{20mu}+\mathrm{v}_{i,k}\mathrm{D}_i^TL_i^TP_iL_i\zeta_i(\tilde{x}_{i,k}, \tau_k)
\\&\mspace{20mu}-\mathrm{v}_{i,k}\mathrm{D}_i^TL_i^TP_i\bar{\mathrm{B}}\mathrm{w}_k
+\mathrm{v}_{i,k}D_i^TL_i^TP_iL_i\mathrm{D}_i\mathrm{v}_{i,k}\}
\\&\mspace{20mu}- \displaystyle{\sum \limits_{i=1}^{N}}\tilde{\mathrm{e}}_{i,k}^TP_i\tilde{\mathrm{e}}_{i,k}\}.
\end{split}
\end{equation}
Substituting (\ref{41}) into (\ref{40}) and manipulating it similar to (\ref{19}) leads to
\allowdisplaybreaks
\begin{equation*} \tag{42} \label{42}
\begin{split}
J&= \mathbb{E}\{\displaystyle{\sum \limits_{i=1}^{N}}
\{\tilde{\mathrm{e}}_{i,k}^T\mathrm{S}_i^TP_i\mathrm{S}_i\tilde{e}_{i,k} +\tilde{\mathrm{e}}_{i,k}^T\mathrm{S}_i^TP_i\Phi_1\tilde{\mathrm{e}}_k
+\tilde{\mathrm{e}}_{i,k}^T\mathrm{S}_i^TP_i\bar{\mathrm{B}}\mathrm{w}_k
\\&\mspace{20mu}- \tilde{\mathrm{e}}_{i,k}^TS_i^TP_iL_i\mathrm{D}_i\mathrm{v}_{i,k}
+ \tilde{\mathrm{e}}_{k}^{T}\Phi_1^{T}P_i\mathrm{S}_i\tilde{\mathrm{e}}_{i,k}
+ \tilde{\mathrm{e}}_k^T\Phi_1^TP_i \Phi_1\tilde{\mathrm{e}}_k
\\&\mspace{20mu}+\tilde{\mathrm{e}}_k^T\Phi_1^TP_i\bar{\mathrm{B}}\Phi_1\mathrm{w}_k
-\tilde{\mathrm{e}}_k^T\Phi_1^TP_iL_i\mathrm{D}_i\mathrm{v}_{i,k}
+ \mathrm{w}_k^T\bar{\mathrm{B}}^TP_i\mathrm{S}_i\tilde{\mathrm{e}}_{i,k}
\\&\mspace{20mu}+ \mathrm{w}_k^T\bar{\mathrm{B}}^TP_i\Phi_1\tilde{\mathrm{e}}_k
+ \mathrm{w}_k^T\bar{\mathrm{B}}^TP_i\bar{\mathrm{B}}\mathrm{w}_k
-\mathrm{w}_k^T\bar{\mathrm{B}}^TP_iL_i\mathrm{D}_i\mathrm{v}_{i,k}
\\&\mspace{20mu}-\mathrm{v}_{i,k}\mathrm{D}_i^TL_i^TP_i\mathrm{S}_i\tilde{\mathrm{e}}_{i,k}
-\mathrm{v}_{i,k}\mathrm{D}_i^TL_i^TP_i\Phi_1\tilde{e}_k
\\&\mspace{20mu}-\mathrm{v}_{i,k}\mathrm{D}_i^TL_i^TP_i\bar{\mathrm{B}}w_k
+\mathrm{v}_{i,k}\mathrm{D}_i^TL_i^TP_iL_i\mathrm{D}_i\mathrm{v}_{i,k}
\\&\mspace{20mu}- \displaystyle{\sum \limits_{i=1}^{N}}\tilde{\mathrm{e}}_{i,k}^TP_i\tilde{\mathrm{e}}_{i,k} + \sigma N\displaystyle{\sum \limits_{i=1}^{N}}\tilde{\mathrm{e}}_{i,k}^{T}\tilde{\mathrm{e}}_{i,k} - \sigma\displaystyle{\sum \limits_{i=1}^{N}}\tilde{\mathrm{e}}_k^{T}\tilde{\mathrm{e}}_k
\\&\mspace{20mu}+ f'^{T}(x_k,\vartheta, \rho_k)P_if'(x_k,\vartheta, \rho_k)
\\&\mspace{20mu}+ \lambda_{max}(L_i^TP_iL_i)\zeta_i^T(\tilde{x}_{i,k}, \tau_k)\zeta_i(\tilde{x}_{i,k}, \tau_k)\}
\\&\mspace{20mu}+ \displaystyle{\sum \limits_{i=1}^{N}} \dfrac{1}{\xi N} \tilde{\mathrm{e}}_{i,k}^{T}\tilde{\mathrm{e}}_{i,k}
- \gamma_1 \mathrm{w}_k^{T}\mathrm{w}_k
- \displaystyle{\sum \limits_{i=1}^{N}} \gamma_2 \mathrm{v}_{i,k}^{T}\mathrm{v}_{i,k}\}.
\end{split}
\end{equation*}
答案1
你面临的主要问题是split
环境不是允许分栏(和分页)。要允许分栏,我建议您从嵌套的equation*
/split
设置切换到align*
设置。然后,将\tag
和\label
指令放在您认为正确的行中。
\documentclass[journal]{IEEEtran}
\usepackage{amssymb,amsmath}
\newcommand\tildeE{\tilde{\mathrm{e}}} % 61 [!] occurrences...
\allowdisplaybreaks
%\usepackage{newtxmath} % optional: Times Roman math font
\begin{document}
\begin{align*}
&\mathbb{E}\{\bigtriangleup{V}(\tildeE_{i,k})\}
= \mathbb{E} \biggl\{ \sum_{i=1}^{N}
\Bigl[ \tildeE_{i,k}^T\mathrm{S}_i^TP_i\mathrm{S}_i\tildeE_{i,k}
+\tildeE_{i,k}^T\mathrm{S}_i^TP_i\Phi_1\tildeE_k
\\&\quad+\tildeE_{i,k}^T\mathrm{S}_i^TP_i\Psi(\tildeE_{i,k}, \rho_k)
\\&\quad- \tildeE_{i,k}^T\mathrm{S}_i^TP_iL_i\zeta_i(\tilde{x}_{i,k}, \tau_k)
\\&\quad+\tildeE_{i,k}^T\mathrm{S}_i^TP_i\bar{\mathrm{B}}\mathrm{w}_k
- \tildeE_{i,k}^T\mathrm{S}_i^TP_iL_i\mathrm{D}_i\mathrm{v}_{i,k}
\\&\quad+ \tildeE_{k}^{T}\Phi_1^{T}P_iS_i\tildeE_{i,k}
+ \tildeE_k^T\Phi_1^TP_i\Phi_1\tildeE_k
\\&\quad+ \tildeE_k^T\Phi_1^TP_i\Psi(\tildeE_{i,k}, \rho_k)
\\&\quad- \tildeE_k^T\Phi_1^TP_iL_i\zeta_i(\tilde{x}_{i,k}, \tau_k)
\\&\quad+\tildeE_k^T\Phi_1^TP_i\bar{\mathrm{B}}\mathrm{w}_k
-\tildeE_k^T\Phi_1^TP_iL_i\mathrm{D}_i\mathrm{v}_{i,k}
\\&\quad+\Psi^T(\tildeE_{i,k}, \rho_k)P_i\mathrm{S}_i\tildeE_{i,k}
\\&\quad+\Psi^T(\tildeE_{i,k}, \rho_k)P_i\Phi_1\tildeE_k
\\&\quad+\Psi^T(\tildeE_{i,k}, \rho_k)P_i\Psi(\tildeE_{i,k}, \rho_k)
\\&\quad- \Psi^T(\tildeE_{i,k}, \rho_k)P_iL_i\zeta_i(\tilde{x}_{i,k}, \tau_k)
\\&\quad+\Psi^T(\tildeE_{i,k}, \rho_k)P_i\bar{\mathrm{B}}\mathrm{w}_k
\\&\quad-\Psi^T(\tildeE_{i,k}, \rho_k)P_iL_i\mathrm{D}_i\mathrm{v}_{i,k}
\\&\quad-\zeta_i^T(\tilde{x}_{i,k}, \tau_k)L_i^TP_i\mathrm{S}_i\tildeE_{i,k}
\\&\quad-\zeta_i^T(\tilde{x}_{i,k}, \tau_k)L_i^TP_i\Phi_1\tildeE_k
\\&\quad-\zeta_i^T(\tilde{x}_{i,k}, \tau_k)L_i^TP_i\Psi(\tildeE_{i,k}, \rho_k)
\\&\quad+\zeta_i^T(\tilde{x}_{i,k}, \tau_k)L_i^TP_iL_i\zeta_i(\tilde{x}_{i,k}, \tau_k)
\\&\quad- \zeta_i^T(\tilde{x}_{i,k}, \tau_k)L_i^TP_i\bar{\mathrm{B}}\mathrm{w}_k
\\&\quad+ \zeta_i^T(\tilde{x}_{i,k}, \tau_k)L_i^TP_iL_i\mathrm{D}_i\mathrm{v}_{i,k}
\\&\quad+ \mathrm{w}_k^T\bar{\mathrm{B}}^TP_i\mathrm{S}_i\tildeE_{i,k}
+ \mathrm{w}_k^T\bar{\mathrm{B}}^TP_i\Phi_1\tildeE_k
\\&\quad+ \mathrm{w}_k^T\bar{\mathrm{B}}^TP_i\Psi(\tildeE_{i,k}, \rho_k)
\\&\quad- \mathrm{w}_k^T\bar{\mathrm{B}}^TP_iL_i\zeta_i(\tilde{x}_{i,k}, \tau_k)
\\&\quad+ \mathrm{w}_k^T\bar{\mathrm{B}}^TP_i\bar{\mathrm{B}}\mathrm{w}_k
-\mathrm{w}_k^T\bar{\mathrm{B}}^TP_iL_i\mathrm{D}_i\mathrm{v}_{i,k}
\\&\quad-\mathrm{v}_{i,k}\mathrm{D}_i^TL_i^TP_i\mathrm{S}_i\tildeE_{i,k}
-\mathrm{v}_{i,k}\mathrm{D}_i^TL_i^TP_i\Phi_1\tildeE_k
\\&\quad-\mathrm{v}_{i,k}\mathrm{D}_i^TL_i^TP_i\Psi(\tildeE_{i,k}, \rho_k)
\\&\quad+\mathrm{v}_{i,k}\mathrm{D}_i^TL_i^TP_iL_i\zeta_i(\tilde{x}_{i,k}, \tau_k)
\\&\quad-\mathrm{v}_{i,k}\mathrm{D}_i^TL_i^TP_i\bar{\mathrm{B}}\mathrm{w}_k
+\mathrm{v}_{i,k}D_i^TL_i^TP_iL_i\mathrm{D}_i\mathrm{v}_{i,k} \smash{\Bigr]}
\\&\quad- \sum_{i=1}^{N}\tildeE_{i,k}^TP_i\tildeE_{i,k} \biggr\}.
\tag{41} \label{41}
\end{align*}
Substituting equation \eqref{41} into \eqref{40} and manipulating it
similarly to \eqref{19} leads to
\begin{align*}
&J = \mathbb{E} \biggl\{ \sum_{i=1}^{N}
\Bigl[ \tildeE_{i,k}^T\mathrm{S}_i^TP_i\mathrm{S}_i\tilde{e}_{i,k} +\tildeE_{i,k}^T\mathrm{S}_i^TP_i\Phi_1\tildeE_k
+\tildeE_{i,k}^T\mathrm{S}_i^TP_i\bar{\mathrm{B}}\mathrm{w}_k
\\&\quad- \tildeE_{i,k}^TS_i^TP_iL_i\mathrm{D}_i\mathrm{v}_{i,k}
+ \tildeE_{k}^{T}\Phi_1^{T}P_i\mathrm{S}_i\tildeE_{i,k}
+ \tildeE_k^T\Phi_1^TP_i \Phi_1\tildeE_k
\\&\quad+\tildeE_k^T\Phi_1^TP_i\bar{\mathrm{B}}\Phi_1\mathrm{w}_k
-\tildeE_k^T\Phi_1^TP_iL_i\mathrm{D}_i\mathrm{v}_{i,k}
+ \mathrm{w}_k^T\bar{\mathrm{B}}^TP_i\mathrm{S}_i\tildeE_{i,k}
\\&\quad+ \mathrm{w}_k^T\bar{\mathrm{B}}^TP_i\Phi_1\tildeE_k
+ \mathrm{w}_k^T\bar{\mathrm{B}}^TP_i\bar{\mathrm{B}}\mathrm{w}_k
- \mathrm{w}_k^T\bar{\mathrm{B}}^TP_iL_i\mathrm{D}_i\mathrm{v}_{i,k}
\\&\quad-\mathrm{v}_{i,k}\mathrm{D}_i^TL_i^TP_i\mathrm{S}_i\tildeE_{i,k}
-\mathrm{v}_{i,k}\mathrm{D}_i^TL_i^TP_i\Phi_1\tilde{e}_k
\\&\quad-\mathrm{v}_{i,k}\mathrm{D}_i^TL_i^TP_i\bar{\mathrm{B}}w_k
+\mathrm{v}_{i,k}\mathrm{D}_i^TL_i^TP_iL_i\mathrm{D}_i\mathrm{v}_{i,k}
\\&\quad- \sum_{i=1}^{N}\tildeE_{i,k}^TP_i\tildeE_{i,k}
+ \sigma N\sum_{i=1}^{N}\tildeE_{i,k}^{T}\tildeE_{i,k}
- \sigma\sum_{i=1}^{N}\tildeE_k^{T}\tildeE_k
\\&\quad+ f'^{T}(x_k,\vartheta, \rho_k)P_if'(x_k,\vartheta, \rho_k)
\\&\quad+ \lambda_{\max}(L_i^TP_iL_i) \zeta_i^T(\tilde{x}_{i,k}, \tau_k) \zeta_i(\tilde{x}_{i,k}, \tau_k) \Bigr]
\\&\quad+ \sum_{i=1}^{N} \dfrac{1}{\xi N} \tildeE_{i,k}^{T}\tildeE_{i,k}
- \gamma_1 \mathrm{w}_k^{T}\mathrm{w}_k
- \sum_{i=1}^{N} \gamma_2 \mathrm{v}_{i,k}^{T}\mathrm{v}_{i,k} \biggr{\}}.
\tag{42} \label{42}
\end{align*}
\end{document}
答案2
@Mico 答案的一个小变化:
- 使用的是包
\MoveEqLeft
中定义的宏mathtools
- 有一点是重新排列的数学术语
\documentclass[journal]{IEEEtran}
\usepackage{amssymb,
mathtools}
\newcommand\tildeE{\tilde{\mathrm{e}}} % 61 [!] occurrences...
\allowdisplaybreaks
\def\arraystretch{2}
\usepackage{lipsum}
\begin{document}
\lipsum[1-2]
\begin{align*}
\MoveEqLeft[1]
\mathbb{E}\{\Delta{V}(\tildeE_{i,k})\}
= \mathbb{E} \biggl\{ \sum_{i=1}^{N}\Bigl[ \tilde{E}_{i,k}^T\mathrm{S}_i^T P_i \mathrm{S}_i \tildeE_{i,k}
+ \tilde{e}_{i,k}^T \mathrm{S}_i^T P_i\Phi_1\tildeE_k \\
& + \tildeE_{i,k}^T\mathrm{S}_i^T P_i\Psi(\tildeE_{i,k}, \rho_k)
- \tildeE_{i,k}^T\mathrm{S}_i^TP_iL_i\zeta_i(\tilde{x}_{i,k}, \tau_k) \\
& + \tildeE_{i,k}^T\mathrm{S}_i^TP_i\bar{\mathrm{B}}\mathrm{w}_k
- \tildeE_{i,k}^T\mathrm{S}_i^TP_iL_i\mathrm{D}_i\mathrm{v}_{i,k}
+ \tildeE_{k}^{T}\Phi_1^{T}P_iS_i\tildeE_{i,k} \\
& + \tildeE_{k}^{T}\Phi_1^{T}P_iS_i\tildeE_{i,k}
+ \tildeE_k^T\Phi_1^TP_i\Phi_1\tildeE_k
+ \tildeE_k^T\Phi_1^TP_i\Psi(\tildeE_{i,k}, \rho_k) \\
& - \tildeE_k^T\Phi_1^TP_iL_i\zeta_i(\tilde{x}_{i,k}, \tau_k)
+ \tildeE_k^T\Phi_1^TP_i\bar{\mathrm{B}}\mathrm{w}_k \\
& - \tildeE_k^T\Phi_1^TP_iL_i\mathrm{D}_i\mathrm{v}_{i,k}
+ \Psi^T(\tildeE_{i,k}, \rho_k)P_i\mathrm{S}_i\tildeE_{i,k} \\
& + \Psi^T(\tildeE_{i,k}, \rho_k)P_i\Phi_1\tildeE_k
+ \Psi^T(\tildeE_{i,k}, \rho_k)P_i\Psi(\tildeE_{i,k}, \rho_k) \\
& - \Psi^T(\tildeE_{i,k}, \rho_k)P_iL_i\zeta_i(\tilde{x}_{i,k}, \tau_k)
+ \Psi^T(\tildeE_{i,k}, \rho_k)P_i\bar{\mathrm{B}}\mathrm{w}_k \\
& - \Psi^T(\tildeE_{i,k}, \rho_k)P_iL_i\mathrm{D}_i\mathrm{v}_{i,k}
- \zeta_i^T(\tilde{x}_{i,k}, \tau_k)L_i^TP_i\mathrm{S}_i\tildeE_{i,k} \\
& -\zeta_i^T(\tilde{x}_{i,k}, \tau_k)L_i^TP_i\Phi_1\tildeE_k
- \zeta_i^T(\tilde{x}_{i,k}, \tau_k)L_i^TP_i\Psi(\tildeE_{i,k}, \rho_k) \\
& + \zeta_i^T(\tilde{x}_{i,k}, \tau_k)L_i^TP_iL_i\zeta_i(\tilde{x}_{i,k}, \tau_k)
- \zeta_i^T(\tilde{x}_{i,k}, \tau_k)L_i^TP_i\bar{\mathrm{B}}\mathrm{w}_k \\
& + \zeta_i^T(\tilde{x}_{i,k}, \tau_k)L_i^TP_iL_i\mathrm{D}_i\mathrm{v}_{i,k}
+ \mathrm{w}_k^T\bar{\mathrm{B}}^TP_i\mathrm{S}_i\tildeE_{i,k} \\
& + \mathrm{w}_k^T\bar{\mathrm{B}}^TP_i\Phi_1\tildeE_k
+ \mathrm{w}_k^T\bar{\mathrm{B}}^TP_i\Psi(\tildeE_{i,k}, \rho_k \\
& - \mathrm{w}_k^T\bar{\mathrm{B}}^TP_iL_i\zeta_i(\tilde{x}_{i,k}, \tau_k)
+ \mathrm{w}_k^T\bar{\mathrm{B}}^TP_i\bar{\mathrm{B}}\mathrm{w}_k \\
& - \mathrm{w}_k^T\bar{\mathrm{B}}^TP_iL_i\mathrm{D}_i\mathrm{v}_{i,k}
- \mathrm{v}_{i,k}\mathrm{D}_i^TL_i^TP_i\mathrm{S}_i\tildeE_{i,k} \\
& - \mathrm{v}_{i,k}\mathrm{D}_i^TL_i^TP_i\Phi_1\tildeE_k
- \mathrm{v}_{i,k}\mathrm{D}_i^TL_i^TP_i\Psi(\tildeE_{i,k}, \rho_k) \\
& + \mathrm{v}_{i,k}\mathrm{D}_i^TL_i^TP_iL_i\zeta_i(\tilde{x}_{i,k}, \tau_k)
- \mathrm{v}_{i,k}\mathrm{D}_i^TL_i^TP_i\bar{\mathrm{B}}\mathrm{w}_k \\
& + \mathrm{v}_{i,k}D_i^TL_i^TP_iL_i\mathrm{D}_i\mathrm{v}_{i,k} \smash{\Bigr]}
- \sum_{i=1}^{N}\tildeE_{i,k}^TP_i\tildeE_{i,k} \biggr\}.
\tag{41} \label{41}
\end{align*}
Substituting equation \eqref{41} into \eqref{40} and manipulating it
similarly to \eqref{19} leads to
\begin{align*}
\MoveEqLeft[1]
J = \mathbb{E} \biggl\{ \sum_{i=1}^{N} \Bigl[ \tildeE_{i,k}^T \mathrm{S}_i^TP_i \mathrm{S}_i\tilde{e}_{i,k}
+ \tildeE_{i,k}^T\mathrm{S}_i^TP_i\Phi_1\tildeE_k
+ \tildeE_{i,k}^T\mathrm{S}_i^TP_i\bar{\mathrm{B}}\mathrm{w}_k \\
& - \tildeE_{i,k}^TS_i^TP_iL_i\mathrm{D}_i\mathrm{v}_{i,k}
+ \tildeE_{k}^{T}\Phi_1^{T}P_i\mathrm{S}_i\tildeE_{i,k}
+ \tildeE_k^T\Phi_1^TP_i \Phi_1\tildeE_k \\
& + \tildeE_k^T\Phi_1^TP_i\bar{\mathrm{B}}\Phi_1\mathrm{w}_k
- \tildeE_k^T\Phi_1^TP_iL_i\mathrm{D}_i\mathrm{v}_{i,k}
+ \mathrm{w}_k^T\bar{\mathrm{B}}^TP_i\mathrm{S}_i\tildeE_{i,k}
\\
& + \mathrm{w}_k^T\bar{\mathrm{B}}^TP_i\Phi_1\tildeE_k
+ \mathrm{w}_k^T\bar{\mathrm{B}}^TP_i\bar{\mathrm{B}}\mathrm{w}_k
- \mathrm{w}_k^T\bar{\mathrm{B}}^TP_iL_i\mathrm{D}_i\mathrm{v}_{i,k}
\\
& - \mathrm{v}_{i,k}\mathrm{D}_i^TL_i^TP_i\mathrm{S}_i\tildeE_{i,k}
- \mathrm{v}_{i,k}\mathrm{D}_i^TL_i^TP_i\Phi_1\tilde{e}_k
\\
& - \mathrm{v}_{i,k}\mathrm{D}_i^TL_i^TP_i\bar{\mathrm{B}}w_k
+ \mathrm{v}_{i,k}\mathrm{D}_i^TL_i^TP_iL_i\mathrm{D}_i\mathrm{v}_{i,k}
\\
& - \sum_{i=1}^{N}\tildeE_{i,k}^TP_i\tildeE_{i,k}
+ \sigma N\sum_{i=1}^{N}\tildeE_{i,k}^{T}\tildeE_{i,k}
- \sigma\sum_{i=1}^{N}\tildeE_k^{T}\tildeE_k
\\
& + f'^{T}(x_k,\vartheta, \rho_k)P_if'(x_k,\vartheta, \rho_k)
\\
& + \lambda_{\max}(L_i^TP_iL_i) \zeta_i^T(\tilde{x}_{i,k}, \tau_k) \zeta_i(\tilde{x}_{i,k}, \tau_k) \Bigr]
\\
& + \sum_{i=1}^{N} \dfrac{1}{\xi N} \tildeE_{i,k}^{T}\tildeE_{i,k}
- \gamma_1 \mathrm{w}_k^{T}\mathrm{w}_k
- \sum_{i=1}^{N} \gamma_2 \mathrm{v}_{i,k}^{T}\mathrm{v}_{i,k} \biggr\}.
\tag{42} \label{42}
\end{align*}
\lipsum[3-7]
\end{document}
答案3
与之前的答案类似,此解决方案基于align*
环境。我应用了双缩进,因为其中一个方程似乎有一个内部部分。另一个方程中的某些部分可能需要在双列布局中使用额外的缩进进行拆分(请参阅我的评论)。我还根据以下情况将方程编号移到了底部Mico 的建议。
对原帖的几点看法
- 使用
\newcommand
或\DeclareMathOperator
避免重复表达和不必要的混乱 - 使用更大比例的括号1, 例如
\bigl\{...\bigr}
,\Bigl\{...\Bigr\}
或\Biggl\{...\Biggr\}
- 强调方程式的内部/外部
- 适合相邻的表达式等
align*
类似环境默认使用显示样式,因此\displaystyle
会变得多余。
对代码进行一些额外的注释。
在第一个等式中,为了减少左间距,我将第一个表达式括在\mathrlap{}
(从mathtools
)中,并在后面(第一个之前&
)添加额外的空格。效果是向所有后续行添加缩进。
这个等式似乎有一个很大的内部部分。因此,可以应用进一步的缩进。如果这是错误的或不符合文章主题,可以用注释部分(在底部)替换整个代码块。
在第二个等式中,有几行表达式较长,无法容纳布局中的可用空间twocolumn
。它们被移动到后续行,并带有缩进以表示延续。
我发现\sum
使用限制会占用大量额外的垂直空间,当总和是后续行的一部分时,这可能是不希望的。为了减少间距,我将两个宏组合在一起:\smash{}
使用\vphantom{}
。如果没有必要,请删除
\vphantom{\sum \limits_{i=1}}
或者
\vphantom{\sum \limits^{N}}
并摆脱\smash{content}
围绕它的论点;content
仍然是等式的一部分。
1- 也适用于其他括号,例如(...)
和[...]
最终结果
代码
\documentclass[journal]{IEEEtran}
\usepackage{amssymb}
\usepackage{mathtools}
\usepackage{kantlipsum}
\newlength\flinesep \setlength\flinesep{1em}
\newlength\nlinesep \setlength\nlinesep{4em}
\allowdisplaybreaks
% \setlength\jot{6pt} % extra line spacing in equations
\DeclareMathOperator{\E}{\mathbb{E}}
\newcommand{\e}{\mathrm{e}}
\newcommand{\te}{\tilde{\e}}
\newcommand\oB{\mathrm{B}}
\newcommand\oD{\mathrm{D}}
\newcommand\oS{\mathrm{S}}
\newcommand\ov{\mathrm{S}}
\newcommand\ow{\mathrm{S}}
\begin{document}
\section{First section}
\kant*[1-2]
\begin{align*}
\mathrlap{\E \Bigl\{\bigtriangleup{V}(\te_{i,k})\Bigr\}
= \E\Biggl\{\sum \limits_{i=1}^{N}
\Bigl\{\te_{i,k}^T\oS_i^TP_i\oS_i\te_{i,k}}
\\&&&+ \te_{i,k}^T\oS_i^TP_i\Phi_1\te_k
\\&&&+ \te_{i,k}^T\oS_i^TP_i\Psi(\te_{i,k}, \rho_k)
\\&&&- \te_{i,k}^T\oS_i^TP_iL_i\zeta_i(\tilde{x}_{i,k}, \tau_k)
\\&&&+ \te_{i,k}^T\oS_i^TP_i\bar{\oB}\ow_k
- \te_{i,k}^T\oS_i^TP_iL_i\oD_i\ov_{i,k}
\\&&&+ \te_{k}^{T}\Phi_1^{T}P_iS_i\te_{i,k}
+ \te_k^T\Phi_1^TP_i\Phi_1\te_k
\\&&&+ \te_k^T\Phi_1^TP_i\Psi(\te_{i,k}, \rho_k)
\\&&&- \te_k^T\Phi_1^TP_iL_i\zeta_i(\tilde{x}_{i,k}, \tau_k)
\\&&&+ \te_k^T\Phi_1^TP_i\bar{\oB}\ow_k
-\te_k^T\Phi_1^TP_iL_i\oD_i\ov_{i,k}
\\&&&+ \Psi^T(\te_{i,k}, \rho_k)P_i\oS_i\te_{i,k}
\\&&&+ \Psi^T(\te_{i,k}, \rho_k)P_i\Phi_1\te_k
\\&&&+ \Psi^T(\te_{i,k}, \rho_k)P_i\Psi(\te_{i,k}, \rho_k)
\\&&&- \Psi^T(\te_{i,k}, \rho_k)P_iL_i\zeta_i(\tilde{x}_{i,k}, \tau_k)
\\&&&+ \Psi^T(\te_{i,k}, \rho_k)P_i\bar{\oB}\ow_k
\\&&&- \Psi^T(\te_{i,k}, \rho_k)P_iL_i\oD_i\ov_{i,k}
\\&&&- \zeta_i^T(\tilde{x}_{i,k}, \tau_k)L_i^TP_i\oS_i\te_{i,k}
\\&&&- \zeta_i^T(\tilde{x}_{i,k}, \tau_k)L_i^TP_i\Phi_1\te_k
\\&&&- \zeta_i^T(\tilde{x}_{i,k}, \tau_k)L_i^TP_i\Psi(\te_{i,k}, \rho_k)
\\&&&+ \zeta_i^T(\tilde{x}_{i,k}, \tau_k)L_i^TP_iL_i\zeta_i(\tilde{x}_{i,k}, \tau_k)
\\&&&- \zeta_i^T(\tilde{x}_{i,k}, \tau_k)L_i^TP_i\bar{\oB}\ow_k
\\&&&+ \zeta_i^T(\tilde{x}_{i,k}, \tau_k)L_i^TP_iL_i\oD_i\ov_{i,k}
\\&&&+ \ow_k^T\bar{\oB}^TP_i\oS_i\te_{i,k}
+ \ow_k^T\bar{\oB}^TP_i\Phi_1\te_k
\\&&&+ \ow_k^T\bar{\oB}^TP_i\Psi(\te_{i,k}, \rho_k)
\\&&&- \ow_k^T\bar{\oB}^TP_iL_i\zeta_i(\tilde{x}_{i,k}, \tau_k)
\\&&&+ \ow_k^T\bar{\oB}^TP_i\bar{\oB}\ow_k
-\ow_k^T\bar{\oB}^TP_iL_i\oD_i\ov_{i,k}
\\&&&- \ov_{i,k}\oD_i^TL_i^TP_i\oS_i\te_{i,k}
-\ov_{i,k}\oD_i^TL_i^TP_i\Phi_1\te_k
\\&&&- \ov_{i,k}\oD_i^TL_i^TP_i\Psi(\te_{i,k}, \rho_k)
\\&&&+ \ov_{i,k}\oD_i^TL_i^TP_iL_i\zeta_i(\tilde{x}_{i,k}, \tau_k)
\\&&&- \ov_{i,k}\oD_i^TL_i^TP_i\bar{\oB}\ow_k
+\ov_{i,k}D_i^TL_i^TP_iL_i\oD_i\ov_{i,k} \Bigr\}
\\& \hspace{\flinesep}
-\mathrlap{\sum \limits_{i=1}^{N}\te_{i,k}^TP_i\te_{i,k}\Biggr\}.}
\tag{41} \label{41}
\end{align*}
Substituting (\ref{41}) into (\ref{40}) and manipulating it similar to (\ref{19}) leads to
\begin{align*}
\mathrlap{J = \E \Biggl\{\sum \limits_{i=1}^{N}
\{\te_{i,k}^T\oS_i^TP_i\oS_i\tilde{e}_{i,k}}
\hspace{\flinesep}
\\& + \te_{i,k}^T\oS_i^TP_i\Phi_1\te_k
+ \te_{i,k}^T\oS_i^TP_i\bar{\oB}\ow_k
\\&- \te_{i,k}^TS_i^TP_iL_i\oD_i\ov_{i,k}
\\&\hspace{\nlinesep} + \te_{k}^{T}\Phi_1^{T}P_i\oS_i\te_{i,k}
+ \te_k^T\Phi_1^TP_i \Phi_1\te_k
\\&+\te_k^T\Phi_1^TP_i\bar{\oB}\Phi_1\ow_k
\\&\hspace{\nlinesep} - \te_k^T\Phi_1^TP_iL_i\oD_i\ov_{i,k}
+ \ow_k^T\bar{\oB}^TP_i\oS_i\te_{i,k}
\\&+ \ow_k^T\bar{\oB}^TP_i\Phi_1\te_k
\\&\hspace{\nlinesep} + \ow_k^T\bar{\oB}^TP_i\bar{\oB}\ow_k
- \ow_k^T\bar{\oB}^TP_iL_i\oD_i\ov_{i,k}
\\&-\ov_{i,k}\oD_i^TL_i^TP_i\oS_i\te_{i,k}
- \ov_{i,k}\oD_i^TL_i^TP_i\Phi_1\tilde{e}_k
\\&-\ov_{i,k}\oD_i^TL_i^TP_i\bar{\oB}w_k
+ \ov_{i,k}\oD_i^TL_i^TP_iL_i\oD_i\ov_{i,k}
\\&- \vphantom{\sum \limits^{N}}
\smash{\sum \limits_{i=1}^{N}\te_{i,k}^TP_i\te_{i,k}}
\\&\hspace{\nlinesep} + \vphantom{\sum \limits_{i=1}}
\smash{\sigma N \sum \limits_{i=1}^{N}\te_{i,k}^{T}\te_{i,k}}
- \vphantom{\sum \limits_{i=1}}
\smash{\sigma\sum \limits_{i=1}^{N}\te_k^{T}\te_k}
\\&+ f'^{T}(x_k,\vartheta, \rho_k)P_if'(x_k,\vartheta, \rho_k)
\\&+ \lambda_{max}(L_i^TP_iL_i)\zeta_i^T(\tilde{x}_{i,k}, \tau_k)\zeta_i(\tilde{x}_{i,k}, \tau_k)\}
\\&+ \vphantom{\sum \limits^{N}}
\smash{\sum \limits_{i=1}^{N} \dfrac{1}{\xi N} \te_{i,k}^{T}\te_{i,k}}
\\&\hspace{\nlinesep} - \vphantom{\sum \limits_{i=1}}
\smash{\gamma_1 \ow_k^{T}\ow_k}
- \vphantom{\sum \limits_{i=1}}
\smash{\sum \limits_{i=1}^{N} \gamma_2 \ov_{i,k}^{T}\ov_{i,k}\Biggr\}}.
\tag{42} \label{42}
\end{align*}
\kant[1]
\end{document}