答案1
我将准备两个“盒子”,分别将其放在左对齐和右对齐的位置,并将其固定在顶线上。
一些水平粉碎可以产生预期的结果。
\documentclass{article}
\usepackage{amsmath,mathtools}
\begin{document}
\subsubsection*{The consumer's problem}
% left box
\noindent$
\begin{alignedat}[t]{2}
&\textup{Max} && \int_0^T u(c_t)e^{-\rho t}\,dt, \\
&\textup{subject to\quad}
&&\dot{b}_t = \gamma b_t +w_t-c_t. \\
&\makebox[0pt][l]{Boundary conditions:} \\
&\makebox[0pt][l]{$\begin{aligned}
&b(0) = b_0\\
\textup{and}\quad& b_T e^{-rt} \ge 0 \quad \textup{(No-Ponzi condition)}
\end{aligned}$}
\end{alignedat}
$\hfill
% right box
$
\begin{aligned}[t]
&u'(c_t)>0,\quad u''(c_t)<0\\
&\begin{aligned}[t]
\textup{and}\quad & \smashoperator[l]{\lim_{c\to\infty}} u'(c_t)=0 \\
& \smashoperator[l]{\lim_{c\to-\infty}} u'(c_t)=\infty
\end{aligned} \\ \hline
\end{aligned}
$\par\medskip
The No-Ponzi condition says that a consumer cannot accumulate unsustainable debt.
\end{document}
答案2
像这样吗?(不确定我是否能够完全正确地辨认您的笔迹...例如,是\gamma
还是r
?)
\documentclass{article}
\usepackage{mathtools,bm}
\newlength\mylen
\settowidth\mylen{$u'(c_t)>0$, $u''(c_t)<0$}
\begin{document}
\noindent
\textbf{The consumer's problem}
\begin{align*}
&\max \int_0^T u(c_t)e^{-\rho t}dt\,,
\hspace{1in}\text{\smash[b]{%
\parbox[t]{\mylen}{%
\centering
$u'(c_t)>0$, $u''(c_t)<0$\\
\medskip
and$\begin{aligned}[t]
\lim_{c\to\infty} u'(c_t) &=0 \\
\lim_{c\to-\infty}u'(c_t) &=\infty
\end{aligned}$
\hrule
}}} \\
\intertext{subject to}
&\dot{b}_t = \gamma b_t +w_t-c_t\,. \\
\intertext{Boundary conditions:}
&\begin{aligned}
b(0) &= b_0\\
\text{and}\quad b_T e^{-rt} &\ge 0 \quad\text{(No-Ponzi condition)}
\end{aligned}
\end{align*}
The No-Ponzi condition says that a consumer cannot accumulate unsustainable debt.
\bigskip\noindent
\textbf{Solution}
\dots
\end{document}
答案3
抱歉,我看不懂手写内容,所以甚至无法从基本原理上理解。但我可能给你提供了一个起点。
\documentclass{article}
\begin{document}
$u^{'}(c_t)>0,u^{''} (c_t)<0$\\
$\lim{\; u^{'}\to(c_t)}=0$\\
$c \rightarrow \infty$\\
$\lim{\; u^{'}\to(c_t)}=\infty$\\
$c \rightarrow\infty$
\end{document}
不确定是 c sub t 还是 ct