我怎样才能拟合这个方程?

我怎样才能拟合这个方程?

我的文章由两行组成。由于这个方程太长,我将其写成覆盖两列。但是,它仍然不适合。(5)溢出了。我该如何解决这个问题?

\documentclass[lettersize,journal]{IEEEtran}
\usepackage{amsmath,amsfonts}
\usepackage{algorithmic}
\usepackage{algorithm}
\usepackage{array}
\usepackage{algpseudocode}
\usepackage[caption=false,font=normalsize,labelfont=sf,textfont=sf]{subfig}
\usepackage{textcomp}
\usepackage{stfloats}
\usepackage{url}
\usepackage{stix}
\usepackage{verbatim}
\usepackage{graphicx}
\usepackage{cite}
\usepackage{color}
\usepackage{lipsum}
\usepackage{cuted}
\hyphenation{op-tical net-works semi-conduc-tor IEEE-Xplore}

\begin{document}
        \begin{strip}
        \begin{multline}
        C(x,y,z,t) = \frac{m_T}{ (2\pi)^{3/2} \sigma_x \sigma_y \sigma_z}\times\text{exp}\left(-\frac{(x - x_T - u_x t)^2}{2\sigma_x^2} - \frac{(y - y_T - u_y t)^2}{2\sigma_y^2} \right)\times \left[ \text{exp}\left(-\frac{(z - z_T)^2}{2\sigma_z^2}\right) + \text{exp} \left( - \frac{(z + z_T)^2}{2\sigma_z^2} \right) \right].
        \label{atm_disp_lang}
    \end{multline}
    \end{strip}
    The advantage of this conversion  is to determine the dispersion parameters ($\sigma_x$, $\sigma_y$, $\sigma_z$) by using empirically derived models which depend on the distance between the TX and RX.

\end{document}

在此处输入图片描述

答案1

我认为您不需要让它跨越两列,它没有那么大。

在此处输入图片描述

\documentclass[journal]{IEEEtran}
\usepackage{amsmath,amsfonts}
% \usepackage{algorithmic}
% \usepackage{algorithm}
% \usepackage{array}
% \usepackage{algpseudocode}
% \usepackage[caption=false,font=normalsize,labelfont=sf,textfont=sf]{subfig}
% \usepackage{textcomp}
%\usepackage{stfloats}
% \usepackage{url}
% \usepackage{stix}
% \usepackage{verbatim}
% \usepackage{graphicx}
% \usepackage{cite}
% \usepackage{color}
% \usepackage{lipsum}
\hyphenation{op-tical net-works semi-conduc-tor IEEE-Xplore}


\usepackage{kantlipsum}

\title{The Title}
\author{First Last}


\begin{document}
\maketitle

\section{The first section}

  \begin{multline}
    C(x,y,z,t)= \frac{m_T}{(2\pi)^{3/2} \sigma_x \sigma_y \sigma_z}
                  \times{}\\
      \exp\biggl(
                                -\frac{(x - x_T - u_x t)^2}{2\sigma_x^2} - \frac{(y - y_T - u_y t)^2}{2\sigma_y^2}
                         \biggr)\times{}\\
                \Biggl[
                 \exp\biggl(
                     -\frac{(z - z_T)^2}{2\sigma_z^2}
                 \biggr) + \exp\biggl(
                     - \frac{(z + z_T)^2}{2\sigma_z^2}
                 \biggr)
               \Biggr].
               \label{atm_disp_lang}
  \end{multline}


The advantage of this conversion  is to determine the dispersion parameters ($\sigma_x$, $\sigma_y$, $\sigma_z$) by using empirically derived models which depend on the distance between the TX and RX.

\kant[1-4]\kant[5][1-2]
\end{document}

(感谢 Celdor 提供的信息)

答案2

我会使用align来分割你的等式,其中的“&”符号表示分割点的位置,并\\表示换行符。请注意,align左侧和右侧部分分别右对齐和左对齐。\phantom{={}}只是为了在符号前面添加一些额外的空间\times

  \begin{align}
    C(x,y,z,t) &= \frac{m_T}{(2\pi)^{3/2} \sigma_x \sigma_y \sigma_z}
                  \times \exp{\biggl(
                                -\frac{(x - x_T - u_x t)^2}{2\sigma_x^2} - \frac{(y - y_T - u_y t)^2}{2\sigma_y^2}
                         \biggr)} \notag \\
               &\phantom{={}}\;\times \Bigg[
                 \exp{\bigg(
                     {-}\frac{(z - z_T)^2}{2\sigma_z^2}
                 \biggr)} + \exp{\biggl(
                     {-}\frac{(z + z_T)^2}{2\sigma_z^2}
                 \biggr)}
               \Bigg].
               \label{atm_disp_lang}
  \end{align}

在此处输入图片描述

您还应该避免使用自动缩放括号,而使用其固定替代方案,例如\bigl(...\bigr)\Biggl(...\Biggr)等。


代码示例:

\documentclass[lettersize,journal]{IEEEtran}
\usepackage{amsmath,amsfonts}
% \usepackage{algorithmic}
% \usepackage{algorithm}
% \usepackage{array}
% \usepackage{algpseudocode}
% \usepackage[caption=false,font=normalsize,labelfont=sf,textfont=sf]{subfig}
% \usepackage{textcomp}
\usepackage{stfloats}
% \usepackage{url}
% \usepackage{stix}
% \usepackage{verbatim}
% \usepackage{graphicx}
% \usepackage{cite}
% \usepackage{color}
% \usepackage{lipsum}
\hyphenation{op-tical net-works semi-conduc-tor IEEE-Xplore}


\usepackage{kantlipsum}

\title{The Title}
\author{First Last}


\begin{document}
\maketitle

\section{The first section}
\begin{figure*}[b]
  \begin{align}
    C(x,y,z,t) &= \frac{m_T}{(2\pi)^{3/2} \sigma_x \sigma_y \sigma_z}
                  \times \exp{\biggl(
                                -\frac{(x - x_T - u_x t)^2}{2\sigma_x^2} - \frac{(y - y_T - u_y t)^2}{2\sigma_y^2}
                         \biggr)} \notag \\
               &\phantom{={}}\;\times \Bigg[
                 \exp{\bigg(
                     {-}\frac{(z - z_T)^2}{2\sigma_z^2}
                 \biggr)} + \exp{\biggl(
                     {-}\frac{(z + z_T)^2}{2\sigma_z^2}
                 \biggr)}
               \Bigg].
               \label{atm_disp_lang}
  \end{align}
\end{figure*}

The advantage of this conversion  is to determine the dispersion parameters ($\sigma_x$, $\sigma_y$, $\sigma_z$) by using empirically derived models which depend on the distance between the TX and RX.

\kant[1-4]\kant[5][1-2]
\end{document}

相关内容