我有下表:
\documentclass{article}
\usepackage{caption}
%------ tables
\usepackage{rotating}
\usepackage{makecell}
\usepackage{xcolor}
\colorlet{bgodd}{black!10}
\usepackage{tabularray}
\UseTblrLibrary{booktabs}
%------
\begin{document}
bla bla bla
\clearpage
\newpage
\clearpage
\newpage
\begin{sidewaystable*}[ht]
\centering
\caption{Papers analyzed in the survey grouped by data sources employed, and techniques used to detect anomalies.}
%\caption{Papers analyzed in the survey grouped by data sources employed, and techniques used to detect anomalies}
% from makecell
\settowidth\rotheadsize{\small Monitoring-Based}
\footnotesize
\setlength\tabcolsep{0.1mm} % let LaTeX calculate intercolumn whitespace
\begin{tblr}{
width=\textheight-3\baselineskip, % <--- added
colspec = {l *{13}{X[c]}},
vline{2-Y} = {2-Z}{dotted},
vline{2,5} = {1-Z}{solid, \lightrulewidth}, % \lightrulewidth is defined in booktabs
colsep = 1pt, % <--- changed
row{1} = {font=\bfseries, c, m},
row{2} = {cmd=\rotcell},
row{odd [3-Y]} = {bg=bgodd}, % <--- changed
}
\toprule
\SetRow{bg=white}
Paper(s) &
\SetCell[c=3]{c, m} {Data\\ Sources} &&&
\SetCell[c=10]{c, m} Technique &&&&&&&&& \\
\midrule
& Log-based
& Distributed Tracing-based
& Monitoring-Based
& {Unsupervised\\ learning}
& {Supervised\\ learning}
& Reinforcement learning
& Semi-supervised learning
& Hybrid learning
& {Statistical\\ Approach}
& Causal Inference
& {Trace\\ comparison}
& Heart Beating
& SLO checks \\
\midrule
\cite{liu2020unsupervised, pahl2018all, jin2020anomaly, bogatinovski2020self} &
& % Log-based
\textbullet & % Distributed Tracing-based
& % Monitoring-Based
\textbullet & % Unsupervised learning
& % Supervised learning
& % Reinforcement learning
& % Semi-supervised learning
& % Hybrid learning
& % Statistical Approach
& % Causal Inference
& % Trace comparison
& % HeartBeating
% SLO checks
\\
\cite{nedelkoski2019anomaly, gan2019leveraging, zhou2019latent} &
& % Log-based
\textbullet & % Distributed Tracing-based
& % Monitoring-Based
& % Unsupervised learning
\textbullet & % Supervised learning
& % Reinforcement learning
& % Semi-supervised learning
& % Hybrid learning
& % Statistical Approach
& % Causal Inference
& % Trace comparison
& % HeartBeating
% SLO checks
\\
\cite{wang2020workflow, chen2020framework, meng2021detecting} &
& % Log-based
\textbullet & % Distributed Tracing-based
& % Monitoring-Based
& % Unsupervised learning
& % Supervised learning
& % Reinforcement learning
& % Semi-supervised learning
& % Hybrid learning
& % Statistical Approach
& % Causal Inference
\textbullet & % Trace comparison
& % HeartBeating
% SLO checks
\\
\cite{li2021microservice} &
& % Log-based
\textbullet & % Distributed Tracing-based
& % Monitoring-Based
& % Unsupervised learning
& % Supervised learning
& % Reinforcement learning
\textbullet & % Semi-supervised learning
& % Hybrid learning
& % Statistical Approach
& % Causal Inference
& % Trace comparison
& % HeartBeating
% SLO checks
\\
\cite{chow2014mystery} &
& % Log-based
\textbullet & % Distributed Tracing-based
& % Monitoring-Based
& % Unsupervised learning
& % Supervised learning
& % Reinforcement learning
& % Semi-supervised learning
& % Hybrid learning
& % Statistical Approach
\textbullet & % Causal Inference
& % Trace comparison
& % HeartBeating
% SLO checks
\\
\cite{belhadi2021reinforcement} &
& % Log-based
\textbullet & % Distributed Tracing-based
& % Monitoring-Based
& % Unsupervised learning
& % Supervised learning
\textbullet & % Reinforcement learning
& % Semi-supervised learning
& % Hybrid learning
& % Statistical Approach
& % Causal Inference
& % Trace comparison
& % HeartBeating
% SLO checks
\\
\cite{sharma2013cloudpd, zhang2016taskinsight, xu2018unsupervised, gulenko2018detecting, mariani2018localizing, wu2020microrca, wu2020performance, wang2018cloudranger, vallis2014novel, su2019robust, huang2013lof, bhaduri2011detecting,wang2012workload, lazarevic2003comparative} &
& % Log-based
& % Distributed Tracing-based
\textbullet & % Monitoring-Based
\textbullet & % Unsupervised learning
& % Supervised learning
& % Reinforcement learning
& % Semi-supervised learning
& % Hybrid learning
& % Statistical Approach
& % Causal Inference
& % Trace comparison
& % HeartBeating
% SLO checks
\\
\cite{sauvanaud2018anomaly, liu2015opprentice, du2018anomaly, mariani2020predicting} &
& % Log-based
& % Distributed Tracing-based
\textbullet & % Monitoring-Based
& % Unsupervised learning
\textbullet & % Supervised learning
& % Reinforcement learning
& % Semi-supervised learning
& % Hybrid learning
& % Statistical Approach
& % Causal Inference
& % Trace comparison
& % HeartBeating
% SLO checks
\\
\cite{magalhaes2010detection, peiris2014pad, abdelrahman2016detection, kang2012dapa, yang2007anomaly, wang2013energy, ahad2015toward, nguyen2013fchain, tan2012prepare, gu2009online, samir2019dla} &
& % Log-based
& % Distributed Tracing-based
\textbullet & % Monitoring-Based
& % Unsupervised learning
& % Supervised learning
& % Reinforcement learning
& % Semi-supervised learning
& % Hybrid learning
\textbullet & % Statistical Approach
& % Causal Inference
& % Trace comparison
& % HeartBeating
% SLO checks
\\
\cite{wu2021causal, chen2014causeinfer, chen2016causeinfer, lin2018microscope} &
& % Log-based
& % Distributed Tracing-based
\textbullet & % Monitoring-Based
& % Unsupervised learning
& % Supervised learning
& % Reinforcement learning
& % Semi-supervised learning
& % Hybrid learning
& % Statistical Approach
\textbullet & % Causal Inference
& % Trace comparison
& % HeartBeating
% SLO checks
\\
\cite{shan2019diagnosis} &
& % Log-based
& % Distributed Tracing-based
\textbullet & % Monitoring-Based
& % Unsupervised learning
& % Supervised learning
& % Reinforcement learning
& % Semi-supervised learning
& % Hybrid learning
& % Statistical Approach
& % Causal Inference
& % Trace comparison
& % HeartBeating
\textbullet % SLO checks
\\
\cite{zang2018fault} &
& % Log-based
& % Distributed Tracing-based
\textbullet & % Monitoring-Based
& % Unsupervised learning
& % Supervised learning
& % Reinforcement learning
& % Semi-supervised learning
& % Hybrid learning
& % Statistical Approach
& % Causal Inference
& % Trace comparison
\textbullet & % HeartBeating
% SLO checks
\\
\cite{yagoub2018equipment, brown2018recurrent, nandi2016anomaly, jia2017logsed, fu2009execution, du2017deeplog} &
\textbullet & % Log-based
& % Distributed Tracing-based
& % Monitoring-Based
\textbullet & % Unsupervised learning
& % Supervised learning
& % Reinforcement learning
& % Semi-supervised learning
& % Hybrid learning
& % Statistical Approach
& % Causal Inference
& % Trace comparison
& % HeartBeating
% SLO checks
\\
\cite{fronza2013failure, zhang2016automated, zhang2019robust, liang2007failure} &
\textbullet & % Log-based
& % Distributed Tracing-based
& % Monitoring-Based
& % Unsupervised learning
\textbullet & % Supervised learning
& % Reinforcement learning
& % Semi-supervised learning
& % Hybrid learning
& % Statistical Approach
& % Causal Inference
& % Trace comparison
& % HeartBeating
% SLO checks
\\
\cite{meng2019loganomaly} &
\textbullet & % Log-based
& % Distributed Tracing-based
& % Monitoring-Based
& % Unsupervised learning
& % Supervised learning
& % Reinforcement learning
& % Semi-supervised learning
\textbullet & % Hybrid learning
& % Statistical Approach
& % Causal Inference
& % Trace comparison
& % HeartBeating
% SLO checks
\\
\cite{meng2019loganomaly, yang2021semi, li2021microservice} &
\textbullet & % Log-based
& % Distributed Tracing-based
& % Monitoring-Based
& % Unsupervised learning
& % Supervised learning
& % Reinforcement learning
\textbullet & % Semi-supervised learning
& % Hybrid learning
& % Statistical Approach
& % Causal Inference
& % Trace comparison
& % HeartBeating
% SLO checks
\\
\cite{salfner2007using, beschastnikh2014inferring} &
\textbullet & % Log-based
& % Distributed Tracing-based
& % Monitoring-Based
& % Unsupervised learning
& % Supervised learning
& % Reinforcement learning
& % Semi-supervised learning
& % Hybrid learning
\textbullet & % Statistical Approach
& % Causal Inference
& % Trace comparison
& % HeartBeating
% SLO checks
\\
\cite{he2020loghub} &
\textbullet & % Log-based
& % Distributed Tracing-based
& % Monitoring-Based
& % Unsupervised learning
& % Supervised learning
& % Reinforcement learning
& % Semi-supervised learning
\textbullet & % Hybrid learning
& % Statistical Approach
& % Causal Inference
& % Trace comparison
& % HeartBeating
% SLO checks
\\
\midrule
\end{tblr}
{\label{tab:tbl_results}}
\end{sidewaystable*}
\clearpage
\newpage
bla bla
\end{document}
截屏:
我必须从第二行开始旋转,这样它才可读,即 270 度。我在第 41 行使用 rotcell 命令没有成功。你知道如何旋转此行的文本吗?
目标是:
解决方案:
我添加了@Celdor 的解决方案:
\renewcommand\cellrotangle{270}
而且它确实有效。
谢谢。
答案1
为什么您认为旋转 270 度的文本比旋转 90 度的文本更具可读性?例如,期刊或会议论文中的文章通常是双面的。在这种情况下,您的文档和表格序言如下:
\documentclass[twoside]{article}
\usepackage{caption}
%------ tables
\usepackage[clockwise]{rotating}
\usepackage{makecell}
\usepackage{xcolor}
\colorlet{bgodd}{black!10}
\usepackage{tabularray}
\UseTblrLibrary{booktabs}
\begin{document}
\begin{sidewaystable*}[ht]
\centering
\caption{Papers analyzed in the survey grouped by data sources employed, and techniques used to detect anomalies.}
\renewcommand\cellrotangle{270}
\settowidth\rotheadsize{\small Monitoring-Based}
\footnotesize
\begin{tblr}{
width=\textheight, % <--- added
colspec = {l *{13}{X[c]}},
vline{2-Y} = {2-Z}{dotted},
vline{2,5} = {1-Z}{solid, \lightrulewidth}, % \lightrulewidth is defined in booktabs
colsep = 2pt, % <--- changed
row{1} = {font=\bfseries, c, m},
row{2} = {cmd=\rotcell},
row{odd [3-Y]} = {bg=bgodd}, % <--- changed
}
% table body
...
\bottomrule
\end{tblr}
\end{sidewaystable*}
\end{document}
经过两次编译后得到以下结果:
如您所见,现在旋转后的文本从奇数页的第二行顶部开始,从偶数页的第二行底部开始。这就是您想要的吗?
附录: 以下解决方案可能会很方便:
\documentclass[twoside]{article}
\usepackage{caption}
%------ tables
\usepackage[clockwise]{rotating}
\usepackage{makecell}
\usepackage{xifthen}
%\ifthenelse{\isodd{thepage}}{\renewcommand\cellrotangle{90}}{\renewcommand\cellrotangle{270}} % start at top of row
\ifthenelse{\isodd{thepage}}{\renewcommand\cellrotangle{270}}{\renewcommand\cellrotangle{90}} % start at bottom of row
\usepackage{xcolor}
\colorlet{bgodd}{black!10}
\usepackage{tabularray}
\UseTblrLibrary{booktabs}
\begin{document}
\begin{sidewaystable*}[ht]
\centering
\caption{Papers analyzed in the survey grouped by data sources employed, and techniques used to detect anomalies.}
\label{tab:tbl_results}
\settowidth\rotheadsize{\small Monitoring-Based}
\footnotesize
\begin{tblr}{
width=\textheight, % <--- added
colspec = {l *{13}{X[c]}},
vline{2-Y} = {2-Z}{dotted},
vline{2,5} = {1-Z}{solid, \lightrulewidth}, % \lightrulewidth is defined in booktabs
colsep = 2pt, % <--- changed
row{1} = {font=\bfseries, c, m},
row{2} = {cmd=\rotcell},
row{odd [3-Y]} = {bg=bgodd}, % <--- changed
}
% table body
\toprule
...
\bottomrule
\end{tblr}
\end{sidewaystable*}
\end{document}