让我们考虑一下我的代码:
\documentclass[11pt,oneside]{book}
\usepackage[intlimits]{amsmath}
\usepackage{amsfonts}
\usepackage{amsbsy}
\usepackage{fixmath}
\usepackage{mathtools}
\usepackage{empheq}
\begin{document}
\begin{equation}
\label{eq:CR3BP:state:transition:matrix}
\vec{\Phi}= \frac{\partial \vec{x}}{\partial \vec{x}_0} = \left[ {\begin{array}{cc}
\frac{\partial \vec{r}}{\partial \vec{r}_0} & \frac{\partial \vec{r}}{\partial \vec{v}_0} \\[0.2cm]
\frac{\partial \vec{v}}{\partial \vec{r}_0} & \frac{\partial \vec{v}}{\partial \vec{v}_0} \\
\end{array} } \right] =
\left[ {\begin{array}{cc}
\vec{\Phi}_{11} & \vec{\Phi}_{12} \\[0.2cm]
\vec{\Phi}_{21} & \vec{\Phi}_{22} \\
\end{array} } \right]
\end{equation}
\end{document}
由于偏导数的符号太小,我想增加红色圆圈矩阵的大小。你能演示一下怎么做吗?
答案1
您可以尝试添加\displaystyle
\documentclass[11pt,oneside]{book}
\usepackage{mathtools}
\begin{document}
\begin{equation*}
\left[ {\begin{array}{cc}
\frac{\partial \vec{r}}{\partial \vec{r}_0} &
\frac{\partial \vec{r}}{\partial \vec{v}_0} \\
\frac{\partial \vec{v}}{\partial \vec{r}_0} &
\frac{\partial \vec{v}}{\partial \vec{v}_0}
\end{array} } \right]
\end{equation*}
\begin{equation*}
\left[ {\begin{array}{cc}
{\displaystyle\frac{\partial \vec{r}}{\partial \vec{r}_0}} &
{\displaystyle\frac{\partial \vec{r}}{\partial \vec{v}_0}} \\[0.3cm]
{\displaystyle\frac{\partial \vec{v}}{\partial \vec{r}_0}} &
{\displaystyle\frac{\partial \vec{v}}{\partial \vec{v}_0}}
\end{array} } \right]
\end{equation*}
\end{document}
答案2
您可以尝试使用\dfrac
( \displaystyle \frac
)\mfrac
或nccmath
:
\documentclass[11pt,oneside]{book}
\usepackage[intlimits]{amsmath}
\usepackage{amsfonts}
\usepackage{amsbsy}
\usepackage{fixmath}
\usepackage{mathtools}
\usepackage{empheq}
\usepackage{nccmath}
\begin{document}
With \verb|\frac|:
\begin{equation}
\label{eq:CR3BP:state:transition:matrix}
\vec{\Phi}= \frac{\partial \vec{x}}{\partial \vec{x}_0} = \left[ {\begin{array}{cc}
\frac{\partial \vec{r}}{\partial \vec{r}_0} & \frac{\partial \vec{r}}{\partial \vec{v}_0} \\[0.2cm]
\frac{\partial \vec{v}}{\partial \vec{r}_0} & \frac{\partial \vec{v}}{\partial \vec{v}_0} \\
\end{array} } \right] =
\left[ {\begin{array}{cc}
\vec{\Phi}_{11} & \vec{\Phi}_{12} \\[0.2cm]
\vec{\Phi}_{21} & \vec{\Phi}_{22} \\
\end{array} } \right]
\end{equation}
With \verb|\mfrac| of \textsf{nccmath}:
\begin{equation}
\label{eq:CR3BP:state:transition:matrix}
\vec{\Phi}= \frac{\partial \vec{x}}{\partial \vec{x}_0} = \left[ {\begin{array}{cc}
\mfrac{\partial \vec{r}}{\partial \vec{r}_0} & \mfrac{\partial \vec{r}}{\partial \vec{v}_0} \\[0.2cm]
\mfrac{\partial \vec{v}}{\partial \vec{r}_0} & \mfrac{\partial \vec{v}}{\partial \vec{v}_0} \\
\end{array} } \right] =
\left[ {\begin{array}{cc}
\vec{\Phi}_{11} & \vec{\Phi}_{12} \\[0.2cm]
\vec{\Phi}_{21} & \vec{\Phi}_{22} \\
\end{array} } \right]
\end{equation}
With \verb|\dfrac|:
\begin{equation}
\label{eq:CR3BP:state:transition:matrix}
\vec{\Phi}= \frac{\partial \vec{x}}{\partial \vec{x}_0} = \left[ {\begin{array}{cc}
\dfrac{\partial \vec{r}}{\partial \vec{r}_0} & \dfrac{\partial \vec{r}}{\partial \vec{v}_0} \\[0.2cm]
\dfrac{\partial \vec{v}}{\partial \vec{r}_0} & \dfrac{\partial \vec{v}}{\partial \vec{v}_0} \\
\end{array} } \right] =
\left[ {\begin{array}{cc}
\vec{\Phi}_{11} & \vec{\Phi}_{12} \\[0.2cm]
\vec{\Phi}_{21} & \vec{\Phi}_{22} \\
\end{array} } \right]
\end{equation}
\end{document}