为什么\noindent
以下代码中的命令被忽略了?我想要的唯一缩进是两个推论之前的段落。
\documentclass[10pt]{amsart}
\usepackage{mathtools}
\begin{document}
We will review bilinear forms and the matrix representations for them. For a reference, one may refer to Applications of Linear Algebra by David C Lay, Judith McDonald, and Steven R Lay.
\vskip0.25in
\noindent \textbf{Corollary 1} \\\vspace{1.25mm}
\noindent {\em $\mathcal{B}$ and $\mathcal{C}$ are two bases for $V$, and $P \in \mathrm{M}_{n}(F)$ is the transition matrix from $\mathcal{C}$ to $\mathcal{B}$. If $A$ is the matrix representation of a form on $V$ with respect to $\mathcal{B}$,}
\begin{equation*}
A^{\prime} = P^{t}AP
\end{equation*}
{\em is the matrix representation of the same form with respect to $\mathcal{C}$.} \\
\vspace{0.25in}
\noindent \textbf{Corollary 2} \\\vspace{1.25mm}
\noindent {\em If A is the matrix representation for a form on V with respect to a basis for $V$, for any invertible matrix $Q \in {\mathrm{M}}_{n}(F)$,}
\begin{equation*}
A^{\prime} = Q A Q^{t}
\end{equation*}
{\em is the matrix representation of the same form with respect to another basis for V.} \\
\vspace{0.25in}
\end{document}
答案1
您指的是下面这样的东西吗?
\documentclass[10pt]{amsart}
\usepackage{mathtools}
\newtheoremstyle{break}
{0.25in}
{0.25in}
{\itshape}
{0pt}
{\bfseries\vspace{1.25mm}}
{\newline}
{0pt}
{}
\theoremstyle{break}
\newtheorem{corollary}{Corollary}
\begin{document}
We will review bilinear forms and the matrix representations for them.
For a reference, one may refer to Applications of Linear Algebra by
David C.~Lay, Judith McDonald, and Steven R.~Lay.
\begin{corollary}
$\mathcal{B}$ and $\mathcal{C}$ are two bases for $V$, and
$P \in \mathrm{M}_{n}(F)$ is the transition matrix from
$\mathcal{C}$ to $\mathcal{B}$. If $A$ is the matrix
representation of a form on $V$ with respect to $\mathcal{B}$,
\begin{equation*}
A' = P^{t}AP
\end{equation*}
is the matrix representation of the same form with respect to $\mathcal{C}$.
\end{corollary}
\begin{corollary}
If $A$ is the matrix representation for a form on $V$ with respect to
a basis for $V$, for any invertible matrix $Q \in {\mathrm{M}}_{n}(F)$,
\begin{equation*}
A' = Q A Q^{t}
\end{equation*}
is the matrix representation of the same form with respect to another basis for $V$.
\end{corollary}
\end{document}
答案2
\noindent
几乎不应该在文档中使用,但如果使用,它只会在段落开头执行任何操作。
所以
\noindent\textbf{Corollary 1}
防止“推论”的缩进(这应该通过定理环境而不是字体更改来设置)
\noindent {\em $\mathcal{B}$ an
什么都不做,因为它是段落中间,B 之前的空格不是段落缩进;它是一个虚假的单词空格,因为后面有一个空格(行尾)\\\vspace{1.25mm}
我只是添加了 ths,尽管我注意到 egreg 添加了类似的例子
\documentclass[10pt]{amsart}
\usepackage{mathtools}
\usepackage{amsthm}
\newtheoremstyle{break}%
{}{}% % Note that final punctuation is omitted.
{\itshape}{}%
{\bfseries}{}%
{\newline}{}
\theoremstyle{break}
\newtheorem{cor}{Corollary}
\begin{document}
We will review bilinear forms and the matrix representations for
them. For a reference, one may refer to Applications of Linear Algebra
by David C Lay, Judith McDonald, and Steven R Lay.
\begin{cor}
$\mathcal{B}$ and $\mathcal{C}$ are two bases for $V$, and
$P \in \mathrm{M}_{n}(F)$ is the transition matrix from
$\mathcal{C}$ to $\mathcal{B}$. If $A$ is the matrix representation
of a form on $V$ with respect to $\mathcal{B}$,
\begin{equation*}
A' = P^{t}AP
\end{equation*}
is the matrix representation of the same form with respect to $\mathcal{C}$.
\end{cor}
\begin{cor}
If A is the matrix representation for a form on V with respect to a
basis for $V$, for any invertible matrix
$Q \in {\mathrm{M}}_{n}(F)$,
\begin{equation*}
A' = Q A Q^{t}
\end{equation*}
is the matrix representation of the same form with respect to another
basis for V.
\end{cor}
\end{document}