\noindent 命令被忽略

\noindent 命令被忽略

为什么\noindent以下代码中的命令被忽略了?我想要的唯一缩进是两个推论之前的段落。

\documentclass[10pt]{amsart}
\usepackage{mathtools}




\begin{document}




We will review bilinear forms and the matrix representations for them. For a reference, one may refer to Applications of Linear Algebra by David C Lay, Judith McDonald, and Steven R Lay.
\vskip0.25in


\noindent \textbf{Corollary 1} \\\vspace{1.25mm}
\noindent {\em $\mathcal{B}$ and $\mathcal{C}$ are two bases for $V$, and $P \in \mathrm{M}_{n}(F)$ is the transition matrix from $\mathcal{C}$ to $\mathcal{B}$. If $A$ is the matrix representation of a form on $V$ with respect to $\mathcal{B}$,}
\begin{equation*}
A^{\prime} = P^{t}AP
\end{equation*}
{\em is the matrix representation of the same form with respect to $\mathcal{C}$.} \\
\vspace{0.25in}


\noindent \textbf{Corollary 2} \\\vspace{1.25mm}
\noindent {\em If A is the matrix representation for a form on V with respect to a basis for $V$, for any invertible matrix $Q \in {\mathrm{M}}_{n}(F)$,}
\begin{equation*}
A^{\prime} = Q A Q^{t}
\end{equation*}
{\em is the matrix representation of the same form with respect to another basis for V.} \\
\vspace{0.25in}


\end{document}

答案1

您指的是下面这样的东西吗?

\documentclass[10pt]{amsart}
\usepackage{mathtools}

\newtheoremstyle{break}
 {0.25in}
 {0.25in}
 {\itshape}
 {0pt}
 {\bfseries\vspace{1.25mm}}
 {\newline}
 {0pt}
 {}

\theoremstyle{break}
\newtheorem{corollary}{Corollary}

\begin{document}

We will review bilinear forms and the matrix representations for them. 
For a reference, one may refer to Applications of Linear Algebra by 
David C.~Lay, Judith McDonald, and Steven R.~Lay.

\begin{corollary}
$\mathcal{B}$ and $\mathcal{C}$ are two bases for $V$, and 
$P \in \mathrm{M}_{n}(F)$ is the transition matrix from 
$\mathcal{C}$ to $\mathcal{B}$. If $A$ is the matrix 
representation of a form on $V$ with respect to $\mathcal{B}$,
\begin{equation*}
A' = P^{t}AP
\end{equation*}
is the matrix representation of the same form with respect to $\mathcal{C}$.
\end{corollary}

\begin{corollary}
If $A$ is the matrix representation for a form on $V$ with respect to 
a basis for $V$, for any invertible matrix $Q \in {\mathrm{M}}_{n}(F)$,
\begin{equation*}
A' = Q A Q^{t}
\end{equation*}
is the matrix representation of the same form with respect to another basis for $V$.
\end{corollary}

\end{document}

在此处输入图片描述

答案2

\noindent几乎不应该在文档中使用,但如果使用,它只会在段落开头执行任何操作。

所以

\noindent\textbf{Corollary 1}

防止“推论”的缩进(这应该通过定理环境而不是字体更改来设置)

\noindent {\em $\mathcal{B}$ an

什么都不做,因为它是段落中间,B 之前的空格不是段落缩进;它是一个虚假的单词空格,因为后面有一个空格(行尾)\\\vspace{1.25mm}

我只是添加了 ths,尽管我注意到 egreg 添加了类似的例子

\documentclass[10pt]{amsart}
\usepackage{mathtools}

\usepackage{amsthm}
\newtheoremstyle{break}%
{}{}%           % Note that final punctuation is omitted.
{\itshape}{}%
{\bfseries}{}%
{\newline}{}

\theoremstyle{break}
\newtheorem{cor}{Corollary}


\begin{document}




We will review bilinear forms and the matrix representations for
them. For a reference, one may refer to Applications of Linear Algebra
by David C Lay, Judith McDonald, and Steven R Lay.



\begin{cor}
  $\mathcal{B}$ and $\mathcal{C}$ are two bases for $V$, and
  $P \in \mathrm{M}_{n}(F)$ is the transition matrix from
  $\mathcal{C}$ to $\mathcal{B}$. If $A$ is the matrix representation
  of a form on $V$ with respect to $\mathcal{B}$,
\begin{equation*}
A' = P^{t}AP
\end{equation*}
is the matrix representation of the same form with respect to $\mathcal{C}$.
\end{cor}


\begin{cor}
  If A is the matrix representation for a form on V with respect to a
  basis for $V$, for any invertible matrix
  $Q \in {\mathrm{M}}_{n}(F)$,
\begin{equation*}
A' = Q A Q^{t}
\end{equation*}
is the matrix representation of the same form with respect to another
basis for V.
\end{cor}


\end{document}

在此处输入图片描述

相关内容