我正在尝试在此段落的右侧输入 tikz 图片。但环境wrapfig
结束后,它似乎仍然会裁剪其后每个段落的前三行,我似乎无法修复它。
\documentclass[12pt]{article}
\usepackage[a4paper]{geometry}
\geometry{total={170mm,257mm},
left=20mm,
top=20mm}
\renewcommand{\baselinestretch}{1.25}
\setlength{\parindent}{0em}
\setlength{\parskip}{0.8em}
\usepackage{amsmath}
\usepackage{wrapfig}
\usepackage{pgfplots}
% axis style
\pgfplotsset{
every axis/.append style={
axis x line=middle,
axis y line=middle,
xlabel={$x$},
ylabel={$y$},
axis line style={->},
},
grid style={dotted,gray},
}
% arrow style
\tikzset{>=stealth}
\pgfplotsset{width=5cm,compat=1.18}
\usepackage{lipsum}
\begin{document}
\begin{wrapfigure}[3]{r}{3.8cm}
\begin{tikzpicture}
\begin{axis}[
grid=both,
%axis equal,
xmin=-2,xmax=4,
ymin=-2,ymax=8.5,
yticklabels={,,},
xticklabels={,,}
]
\addplot[blue,thick,domain=-2:4,samples=50]({x},{x^3});
\draw [red, dashed](axis cs: 1,1) -- (axis cs: 2,8) node [pos=0.5,anchor=south east]{$\Delta s$};
\draw [red, dashed](axis cs: 1,1) -- (axis cs: 2,1) node [pos=0.5,anchor=north]{$\Delta x$};
\draw [red, dashed](axis cs: 2,1) -- (axis cs: 2,8) node [pos=0.5,anchor=west]{$\Delta y$};
\end{axis}
\end{tikzpicture}
\end{wrapfigure}
\section*{Buelengde av par. kurver}
Vi har at \( (ds)^2 = (dx)^2 + (dy)^2 \), som gir at
\(ds = \sqrt{(dx)^2 + (dy)^2} dt \).\\
Dermed blir
\begin{align*}
s &= \int_a^b ds = \int_a^b \sqrt{(dx)^2 + (dy)^2} dt\\
&= \int_a^b \sqrt{ (f'(t))^2 + (g'(t))^2 } dt
\end{align*}
\lipsum[1-3]
\end{document}
答案1
您不能在组中开始或结束 wrapfig,并且在这里您结束于为标题设置的组中。
由于标题较短,您可以先进入标题,然后将情节稍微上移以进行补偿。
\documentclass[12pt]{article}
\usepackage[a4paper]{geometry}
\geometry{total={170mm,257mm},
left=20mm,
top=20mm}
\renewcommand{\baselinestretch}{1.25}
\setlength{\parindent}{0em}
\setlength{\parskip}{0.8em}
\usepackage{amsmath}
\usepackage{wrapfig}
\usepackage{pgfplots}
% axis style
\pgfplotsset{
every axis/.append style={
axis x line=middle,
axis y line=middle,
xlabel={$x$},
ylabel={$y$},
axis line style={->},
},
grid style={dotted,gray},
}
% arrow style
\tikzset{>=stealth}
\pgfplotsset{width=5cm,compat=1.18}
\usepackage{lipsum}
\begin{document}
\section*{Buelengde av par. kurver}
\begin{wrapfigure}[3]{r}{3.8cm}
\vspace{-2\baselineskip}
\begin{tikzpicture}
\begin{axis}[
grid=both,
%axis equal,
xmin=-2,xmax=4,
ymin=-2,ymax=8.5,
yticklabels={,,},
xticklabels={,,}
]
\addplot[blue,thick,domain=-2:4,samples=50]({x},{x^3});
\draw [red, dashed](axis cs: 1,1) -- (axis cs: 2,8) node [pos=0.5,anchor=south east]{$\Delta s$};
\draw [red, dashed](axis cs: 1,1) -- (axis cs: 2,1) node [pos=0.5,anchor=north]{$\Delta x$};
\draw [red, dashed](axis cs: 2,1) -- (axis cs: 2,8) node [pos=0.5,anchor=west]{$\Delta y$};
\end{axis}
\end{tikzpicture}
\end{wrapfigure}
Vi har at \( (ds)^2 = (dx)^2 + (dy)^2 \), som gir at
\(ds = \sqrt{(dx)^2 + (dy)^2} dt \).\\
Dermed blir
\begin{align*}
s &= \int_a^b ds = \int_a^b \sqrt{(dx)^2 + (dy)^2} dt\\
&= \int_a^b \sqrt{ (f'(t))^2 + (g'(t))^2 } dt
\end{align*}
\lipsum[1-3]
\end{document}