我一直无法弄清楚我遇到的对齐问题。您可以看到数字不太对齐,很可能是由于积分的显示。有人能帮我弄清楚如何对齐它们吗?
\documentclass[12pt,letterpaper]{article}
\usepackage{fullpage}
\usepackage[top=1in, bottom=1.5in, left=1in, right=1in]{geometry}
\usepackage{amsmath,amsthm,amsfonts,amssymb,amscd}
\usepackage{lastpage}
\usepackage{fancyhdr}
\usepackage{tasks}
\usepackage{parskip}
\usepackage{multicol}
% Edit these as appropriate
\newcommand\course{AP Calculus AB}
\pagestyle{fancyplain}
\headheight 35pt
\lfoot{Differentiation and Integration}
\chead{Cumulative Review \\ Differentiation and Integration}
\rhead{\course \\ \today}
\lfoot{AP Calculus AB}
\cfoot{Flint Hill}
\rfoot{\small\thepage}
\headsep 1em
\settasks{
label-width=12pt,
item-indent=3em,
before-skip=0pt,
after-skip=0pt,
after-item-skip=0pt,
}
\begin{document}
\begin{multicols}{2}
\begin{tasks}
\task[1. ] \; \(f\big(x\big)=\big(2x+3\big)^3\cdot \cos x\), find \(f^\prime\) \\
\task[2. ] \; \(\displaystyle{\int \sin\big(4x\big)\; dx=}\) \\
\task[3. ] \; If \(f\big(x\big)=e^{2x}\), then \(f^\prime\big(x\big)\) \\
\task[4. ] \; \(\displaystyle{\int\big(x^5-\sin x\big)\; dx=}\) \\
\task[5. ] \; \(x^3+2xy+2y^2=90\), find \(dy/dx\) \\
\task[6. ] \; \(f\big(x\big)=\sin^4\big(x^3\big)\) find \(f^\prime\big(x\big)\) \\
\task[7. ] \; \(\displaystyle{\int\cos^5\big(x\big)\sin\big(x\big)\; dx=}\) \\
\task[8. ] \; \(y=\big(x^2-3x\big)^6\) find \(y^\prime\) \\
\task[9. ] \; \(y=\ln|\sin x|\) find \(y^\prime\) \\
\task[10. ] \; \(\displaystyle{\int 4x\cos\big(x^2\big)\;dx=}\) \\
\task[11. ] \; \(f\big(x\big)=e^{-x/2}\) find \(f^\prime\big(x\big)\) \\
\task[12. ]\; \( y=\dfrac{x}{\sqrt{1-x}}\) find \(y^\prime\) \\
\task[13. ] \; \(\displaystyle{\int\big(x+2\big)\big(x^2+4x+11\big)\; dx}\) \\
\task[14. ] \; \(y=\dfrac{8}{1+\cot x}\), find \(y^\prime\) \\
\task[15. ] \; \(\displaystyle{\int \sqrt[5]{3-5x}\; dx}\) \\
\task[16.] \; \(\tan\big(x+y\big)=5x\) find \(dy/dx\) \\
\task[17. ] \; \(\displaystyle{\int 5\; dx}\) \\
\task[18. ] \; \(y=\ln\sqrt{x^2-4}\) find \(y^\prime\) \\
\task[19. ] \; \(f\big(x\big)=x^2e^x\) find \(f^\prime\big(x\big)\) \\
\task[20. ] \; \(\displaystyle{\int x^3\big(1-x^2\big)\; dx}\) \\
\task[21. ] \; \(f\big(x\big)=e^{\sin x}\) find \(f^\prime\big(x\big)\) \\
\task[22. ] \; \(\displaystyle{\int\dfrac{1}{x^2}\; dx=}\)\\
\task[23. ] \; \(y=\sin^{-1}\big(7x\big)\), find \(y^\prime\) \\
\task[24. ] \; \(\displaystyle{\int 4\sec x\tan x\; dx=}\)\\
\task[25. ] \; \(f\big(x\big)=\ln\big|2x^3-5\big|\), find \(f^\prime\big(x\big)\) \\
\task[26. ] \; \(\displaystyle{\int\dfrac{1}{\sqrt[3]{x^{11}}}\; dx}=\)\\
\task[27. ] \; \(\displaystyle{\int 2x\big(x^2+1\big)^2\; dx=}\)\\
\task[28. ] \; \(f\big(x\big)=\dfrac{1}{4}\sin^2\big(2x\big)\) find \(f^\prime\big(x\big)\)\\
\task[29. ] \; \(f\big(x\big)=\dfrac{e^x}{x^3}\), find \(f^\prime\big(x\big)\) \\
\task[30. ] \; \(f\big(x\big)=5e^{2-x}\) find \(f^\prime\big(x\big)\) \\
\task[31. ] \; \(\displaystyle{\int x\big(60x^3-1\big)\; dx=}\) \\
\task[32. ] \; \(f\big(x\big)=x^3\tan\big(5x\big)\) find \(f^\prime\big(x\big)\) \\
\task[33. ] \; \(\displaystyle{\int\Bigg(x^2-\dfrac{1}{x^3}\Bigg)\; dx=}\)\\
\task[34. ] \; \(15\sec x\tan x\; dx=\) \\
\task[35. ]\;\( f\big(x\big)=x\sqrt{x^3+2}\) find \(f^\prime\big(x\big)\) \\
\task[36. ] \; \(y=\tan^{-1}\sqrt{x} \) find \(y^\prime\) \\
\task[37. ] \; \(\displaystyle{\big(x+1\big)^2\; dx=}\) \\
\task[38. ] \; \(f\big(x\big)=\tan^2\big(5x\big)\) find \(f^\prime\big(x\big)\) \\
\end{tasks}
\end{multicols}
\end{document}
答案1
由于您的问题源于积分符号,因此您可以将其添加\vphantom{$\displaystyle$
到每个项目中。
\documentclass[12pt,letterpaper]{article}
%\usepackage{fullpage}
\usepackage[
top=1in,
bottom=1.5in,
left=1in,
right=1in,
headsep=1em,
headheight=35pt
]{geometry}
\usepackage{amsmath,amsthm,amsfonts,amssymb,amscd}
\usepackage{lastpage}
\usepackage{fancyhdr}
\usepackage{tasks}
%\usepackage{parskip}
\usepackage{multicol}
% Edit these as appropriate
\newcommand\course{AP Calculus AB}
\pagestyle{fancyplain}
\lfoot{Differentiation and Integration}
\chead{Cumulative Review \\ Differentiation and Integration}
\rhead{\course \\ \today}
\lfoot{AP Calculus AB}
\cfoot{Flint Hill}
\rfoot{\small\thepage}
\settasks{
label=\arabic*.,
label-width=24pt,
item-indent=3em,
before-skip=0pt,
after-skip=0pt,
after-item-skip=12pt,
item-format={\vphantom{$\displaystyle\int$}},
}
\begin{document}
\begin{multicols}{2}
\begin{tasks}(1)
\task \(f(x)=(2x+3)^3\cdot \cos x\), find \(f'\)
\task \(\displaystyle \int \sin(4x)\, dx=\)
\task If \(f(x)=e^{2x}\), then \(f'(x)\)
\task \(\displaystyle \int(x^5-\sin x)\, dx=\)
\task \(x^3+2xy+2y^2=90\), find \(dy/dx\)
\task \(f(x)=\sin^4(x^3)\) find \(f'(x)\)
\task \(\displaystyle \int\cos^5(x)\sin(x)\, dx=\)
\task \(y=(x^2-3x)^6\) find \(y'\)
\task \(y=\ln|\sin x|\) find \(y'\)
\task \(\displaystyle \int 4x\cos(x^2)\,dx=\)
\task \(f(x)=e^{-x/2}\) find \(f'(x)\)
\task \( y=\dfrac{x}{\sqrt{1-x}}\) find \(y'\)
\task \(\displaystyle \int(x+2)(x^2+4x+11)\, dx\)
\task \(y=\dfrac{8}{1+\cot x}\), find \(y'\)
\task \(\displaystyle \int \sqrt[5]{3-5x}\, dx\)
\task \(\tan(x+y)=5x\) find \(dy/dx\)
\task \(\displaystyle \int 5\, dx\)
\task \(y=\ln\sqrt{x^2-4}\) find \(y'\)
\task \(f(x)=x^2e^x\) find \(f'(x)\)
\task \(\displaystyle \int x^3(1-x^2)\, dx\)
\task \(f(x)=e^{\sin x}\) find \(f'(x)\)
\task \(\displaystyle \int\dfrac{1}{x^2}\, dx=\)
\task \(y=\sin^{-1}(7x)\), find \(y'\)
\task \(\displaystyle \int 4\sec x\tan x\, dx=\)
\task \(f(x)=\ln\big|2x^3-5\big|\), find \(f'(x)\)
\task \(\displaystyle \int\frac{1}{\sqrt[3]{x^{11}}}\, dx=\)
\task \(\displaystyle \int 2x(x^2+1)^2\, dx=\)
\task \(f(x)=\dfrac{1}{4}\sin^2(2x)\) find \(f'(x)\)
\task \(f(x)=\dfrac{e^x}{x^3}\), find \(f'(x)\)
\task \(f(x)=5e^{2-x}\) find \(f'(x)\)
\task \(\displaystyle \int x(60x^3-1)\, dx=\)
\task \(f(x)=x^3\tan(5x)\) find \(f'(x)\)
\task \(\displaystyle \int\Bigl(x^2-\dfrac{1}{x^3}\Bigr)\, dx=\)
\task \(\displaystyle \int 15\sec x\tan x\, dx=\)
\task \( f(x)=x\sqrt{x^3+2}\) find \(f'(x)\)
\task \(y=\tan^{-1}\sqrt{x} \) find \(y'\)
\task \(\displaystyle \int(x+1)^2\, dx=\)
\task \(f(x)=\tan^2(5x)\) find \(f'(x)\)
\end{tasks}
\end{multicols}
\end{document}
请注意,我大大简化了您的代码:
- 不
\big
使用,因为括号的大小已经正确 ^\prime
更好的输入是'
- 无需手动编号,因为
tasks
它可以自行完成 - 全部
\;
已被删除,但替换\,
为dx
\Bigg
我用的是\Bigl
和而不是\Bigr
(栅栏越小越好)- 所有
\\
内容都被视为无用,被项目之间的固定分隔所取代 \displaystyle
不接受争论
另一方面,我认为没有理由采用这种特殊的顺序(从上到下和从左到右),而不是更自然的从左到右和从上到下。
\documentclass[12pt,letterpaper]{article}
%\usepackage{fullpage}
\usepackage[
top=1in,
bottom=1.5in,
left=1in,
right=1in,
headsep=1em,
headheight=35pt
]{geometry}
\usepackage{amsmath,amsthm,amsfonts,amssymb,amscd}
\usepackage{lastpage}
\usepackage{fancyhdr}
\usepackage{tasks}
%\usepackage{parskip}
%\usepackage{multicol}
% Edit these as appropriate
\newcommand\course{AP Calculus AB}
\pagestyle{fancyplain}
\lfoot{Differentiation and Integration}
\chead{Cumulative Review \\ Differentiation and Integration}
\rhead{\course \\ \today}
\lfoot{AP Calculus AB}
\cfoot{Flint Hill}
\rfoot{\small\thepage}
\settasks{
label=\arabic*.,
label-width=24pt,
item-indent=3em,
before-skip=0pt,
after-skip=0pt,
after-item-skip=12pt,
item-format={\vphantom{$\displaystyle\int$}},
}
\begin{document}
\begin{tasks}(2)
\task \(f(x)=(2x+3)^3\cdot \cos x\), find \(f'\)
\task \(\displaystyle \int \sin(4x)\, dx=\)
\task If \(f(x)=e^{2x}\), then \(f'(x)\)
\task \(\displaystyle \int(x^5-\sin x)\, dx=\)
\task \(x^3+2xy+2y^2=90\), find \(dy/dx\)
\task \(f(x)=\sin^4(x^3)\) find \(f'(x)\)
\task \(\displaystyle \int\cos^5(x)\sin(x)\, dx=\)
\task \(y=(x^2-3x)^6\) find \(y'\)
\task \(y=\ln|\sin x|\) find \(y'\)
\task \(\displaystyle \int 4x\cos(x^2)\,dx=\)
\task \(f(x)=e^{-x/2}\) find \(f'(x)\)
\task \( y=\dfrac{x}{\sqrt{1-x}}\) find \(y'\)
\task \(\displaystyle \int(x+2)(x^2+4x+11)\, dx\)
\task \(y=\dfrac{8}{1+\cot x}\), find \(y'\)
\task \(\displaystyle \int \sqrt[5]{3-5x}\, dx\)
\task \(\tan(x+y)=5x\) find \(dy/dx\)
\task \(\displaystyle \int 5\, dx\)
\task \(y=\ln\sqrt{x^2-4}\) find \(y'\)
\task \(f(x)=x^2e^x\) find \(f'(x)\)
\task \(\displaystyle \int x^3(1-x^2)\, dx\)
\task \(f(x)=e^{\sin x}\) find \(f'(x)\)
\task \(\displaystyle \int\dfrac{1}{x^2}\, dx=\)
\task \(y=\sin^{-1}(7x)\), find \(y'\)
\task \(\displaystyle \int 4\sec x\tan x\, dx=\)
\task \(f(x)=\ln\big|2x^3-5\big|\), find \(f'(x)\)
\task \(\displaystyle \int\frac{1}{\sqrt[3]{x^{11}}}\, dx=\)
\task \(\displaystyle \int 2x(x^2+1)^2\, dx=\)
\task \(f(x)=\dfrac{1}{4}\sin^2(2x)\) find \(f'(x)\)
\task \(f(x)=\dfrac{e^x}{x^3}\), find \(f'(x)\)
\task \(f(x)=5e^{2-x}\) find \(f'(x)\)
\task \(\displaystyle \int x(60x^3-1)\, dx=\)
\task \(f(x)=x^3\tan(5x)\) find \(f'(x)\)
\task \(\displaystyle \int\Bigl(x^2-\dfrac{1}{x^3}\Bigr)\, dx=\)
\task \(\displaystyle \int 15\sec x\tan x\, dx=\)
\task \( f(x)=x\sqrt{x^3+2}\) find \(f'(x)\)
\task \(y=\tan^{-1}\sqrt{x} \) find \(y'\)
\task \(\displaystyle \int(x+1)^2\, dx=\)
\task \(f(x)=\tan^2(5x)\) find \(f'(x)\)
\end{tasks}
\end{document}
答案2
这是满足您的要求的代码:
\documentclass[12pt,letterpaper]{article}
\usepackage{fullpage}
\usepackage[top=1in, bottom=1.5in, left=1in, right=1in]{geometry}
\usepackage{amsmath,amsthm,amsfonts,amssymb,amscd}
\usepackage{lastpage}
\usepackage{fancyhdr}
\usepackage{tasks}
\usepackage{parskip}
\usepackage{multicol}
% Edit these as appropriate
\newcommand\course{AP Calculus AB}
\pagestyle{fancyplain}
\headheight 35pt
\lfoot{Differentiation and Integration}
\chead{Cumulative Review \\ Differentiation and Integration}
\rhead{\course \\ \today}
\lfoot{AP Calculus AB}
\cfoot{Flint Hill}
\rfoot{\small\thepage}
\headsep 1em
\settasks{
label-width=16pt,
item-indent=3em,
before-skip=0pt,
after-skip=0pt,
after-item-skip=0pt,
}
\begin{document}
\begin{multicols}{2}
\begin{tasks}[label=\arabic*., label-align=right, label-offset=0.67em]
\task $f\left(x\right)=\left(2x+3\right)^3\cdot \cos x$, find $f'$ \\
\task $\displaystyle{\int \sin\left(4x\right)\; dx=}$ \\
\task If $f\left(x\right)=e^{2x}$, then $f'\left(x\right)$ \\
\task $\displaystyle{\int\left(x^5-\sin x\right)\; dx=}$ \\
\task $x^3+2xy+2y^2=90$, find $dy/dx$ \\
\task $f\left(x\right)=\sin^4\left(x^3\right)$ find $f'\left(x\right)$ \\
\task $\displaystyle{\int\cos^5\left(x\right)\sin\left(x\right)\; dx=}$ \\
\task $y=\left(x^2-3x\right)^6$ find $y'$ \\
\task $y=\ln|\sin x|$ find $y'$ \\
\task $\displaystyle{\int 4x\cos\left(x^2\right)\;dx=}$ \\
\task $f\left(x\right)=e^{-x/2}$ find $f'\left(x\right)$ \\
\task $ y=\dfrac{x}{\sqrt{1-x}}$ find $y'$ \\
\task $\displaystyle{\int\left(x+2\right)\left(x^2+4x+11\right)\; dx}$ \\
\task $y=\dfrac{8}{1+\cot x}$, find $y'$ \\
\task $\displaystyle{\int \sqrt[5]{3-5x}\; dx}$ \\
\task $\tan\left(x+y\right)=5x$ find $dy/dx$ \\
\task $y=\ln\sqrt{x^2-4}$ find $y'$ \\
\task $f\left(x\right)=x^2e^x$ find $f'\left(x\right)$ \\
\task $\displaystyle{\int 5\; dx}$ \\
\task $f\left(x\right)=e^{\sin x}$ find $f'\left(x\right)$ \\
\task $\displaystyle{\int x^3\left(1-x^2\right)\; dx}$ \\
\task $y=\sin^{-1}\left(7x\right)$, find $y'$ \\
\task $f\left(x\right)=\ln\left|2x^3-5\right|$, find $f'\left(x\right)$ \\
\task $\displaystyle{\int 4\sec x\tan x\; dx=}$\\
\task $\displaystyle{\left(x+1\right)^2\; dx=}$ \\
\task $f\left(x\right)=\tan^2\left(5x\right)$ find $f'\left(x\right)$ \\
\task $\displaystyle{\int\dfrac{1}{x^2}\; dx=}$\\
\task $f\left(x\right)=5e^{2-x}$ find $f'\left(x\right)$ \\
\task $f\left(x\right)=\dfrac{e^x}{x^3}$, find $f'\left(x\right)$ \\
\task $\displaystyle{\int x\left(60x^3-1\right)\; dx=}$ \\
\task $f\left(x\right)=\dfrac{1}{4}\sin^2\left(2x\right)$ find $f'\left(x\right)$\\
\task $\displaystyle{\int 2x\left(x^2+1\right)^2\; dx=}$\\
\task $15\sec x\tan x\; dx=$ \\
\task $ f\left(x\right)=x\sqrt{x^3+2}$ find $f'\left(x\right)$ \\
\task $y=\tan^{-1}\sqrt{x} $ find $y'$ \\
\task $\displaystyle{\int\dfrac{1}{\sqrt[3]{x^{11}}}\; dx}=$\\
\task $f\left(x\right)=x^3\tan\left(5x\right)$ find $f'\left(x\right)$ \\
\task $\displaystyle{\int\left(x^2-\dfrac{1}{x^3}\right)\; dx=}$\\
\end{tasks}
\end{multicols}
\end{document}
如果用放大镜看,并不是完全完美,但可能比以前的代码更加一致。
比较: