下面的 mwe 代码在 overleaf.com 中编译。
但是下面的截图显示了生成的错误消息,尽管我花了几个小时进行调整和研究 tex.stack 帖子,但我仍无法解决。
您的帮助将使我保持理智!:)
谢谢你!
姆韦
\documentclass[12pt]{exam}
\usepackage{amsmath}
%\usepackage{cancel}
%\usepackage{caption}
% allows captions in minipage envir
\usepackage{amssymb}
%\usepackage{mathrsfs}
\usepackage{framed} %box para
\usepackage{multicol}
\usepackage{tasks}
\usepackage[margin=0.5in]{geometry}
%\everymath{\displaystyle}
\setlength{\parindent}{0pt} % removes paragraph indentation
\pagestyle{head}
\header{Unit 9 Assignment: Lesson 4-7 Part 1 - Quadratic Formula Practice}
{}
{02/13/2023}
\newcommand{\pagetop}{%
%\makebox[\textwidth]%{Name:\enspace\hrulefill}\par
\vspace{4mm}
\fbox{\fbox{\parbox{\dimexpr\textwidth-4\fboxsep-4\fboxrule}{
\textbf {Use the Quadratic Formula to solve each equation. Write answers in 2 forms: (1) integer or simplified radical (2) decimal approximation.}
%\par
%\bigskip
}}}\par
\vspace{0.5mm}
}
\begin{document}
\pagetop
\newcommand*{\qf}{x=\frac{-(b) \pm\sqrt{(b)^2-4(a)(c)}}{2(a)}}
\settasks{
after-item-skip=5em, after-skip=2cm,
label-width=2em,
item-indent=3em,
label=(\arabic*),
column-sep=2em
}
\begin{tasks}(2)
%Prob #1
\task -x^2+7x-3=0
Divide by -1 to cancel -1 on leading coefficient.
x^2-7x+3=0
\begin{aligned}
x&=\frac{-(7)\pm\sqrt{(-7)^2-4(1)(3)}}{2(1)}
&=\frac{-7\pm\sqrt{7^2-12}}{2}
&=\frac{-7\pm\sqrt{37}}{2}
\end{aligned}
%Prob #2
\task 0=-0.01x^2+1.22x+3
mutliply through by 100 to eliminate decimals.
0=-1x^2+122x+3
Since the problem asks for horizontal distance@ 30 ft height, can I write this equation:
30=-1x^2+122x+300
Set equation equal to zero by subtracting 30 from both sides.
0=-1x^2+122x+270
and then solve for x
x&=\frac{(-122)\pm\sqrt{(-122)^2-4(-1)(300)}}{2(-1)}
x&=\frac{(-122)\pm\sqrt{16084}}{2(-1)}
x=-2.17 or 124.41
\qf
\end{tasks}
\end{document}
答案1
你只需要注意,所有的数学都是在数学模式下进行的
\documentclass[12pt]{exam}
\usepackage{amsmath}
%\usepackage{cancel}
%\usepackage{caption}
% allows captions in minipage envir
\usepackage{amssymb}
%\usepackage{mathrsfs}
\usepackage{framed} %box para
\usepackage{multicol}
\usepackage{tasks}
\usepackage[margin=0.5in]{geometry}
%\everymath{\displaystyle}
\setlength{\parindent}{0pt} % removes paragraph indentation
\pagestyle{head}
\header{Unit 9 Assignment: Lesson 4-7 Part 1 - Quadratic Formula Practice}
{}
{02/13/2023}
\newcommand{\pagetop}{%
%\makebox[\textwidth]%{Name:\enspace\hrulefill}\par
\vspace{4mm}
\fbox{\fbox{\parbox{\dimexpr\textwidth-4\fboxsep-4\fboxrule}{
\textbf {Use the Quadratic Formula to solve each equation. Write answers in 2 forms: (1) integer or simplified radical (2) decimal approximation.}
%\par
%\bigskip
}}}\par
\vspace{0.5mm}
}
\begin{document}
\pagetop
\newcommand*{\qf}{$x=\frac{-(b) \pm\sqrt{(b)^2-4(a)(c)}}{2(a)}$}
\settasks{
after-item-skip=5em, after-skip=2cm,
label-width=2em,
item-indent=3em,
label=(\arabic*),
column-sep=2em
}
\begin{tasks}(2)
%Prob #1
\task $-x^2+7x-3=0$
Divide by $-1$ to cancel $-1$ on leading coefficient.
\[
x^2-7x+3=0
\]
\begin{align*}
x&=\frac{-(7)\pm\sqrt{(-7)^2-4(1)(3)}}{2(1)}\\
&=\frac{-7\pm\sqrt{7^2-12}}{2}\\
&=\frac{-7\pm\sqrt{37}}{2}
\end{align*}
%Prob #2
\task $0=-0.01x^2+1.22x+3$
mutliply through by $100$ to eliminate decimals.
\[
0=-1x^2+122x+3
\]
Since the problem asks for horizontal distance@ 30 ft height, can I write this equation:
\[
30=-1x^2+122x+300
\]
Set equation equal to zero by subtracting $30$ from both sides.
\[
0=-1x^2+122x+270
\]
and then solve for $x$
\begin{align*}
x&=\frac{(-122)\pm\sqrt{(-122)^2-4(-1)(300)}}{2(-1)}\\
x&=\frac{(-122)\pm\sqrt{16084}}{2(-1)}
\end{align*}
$x=-2.17$ or $124.41$
\qf
\end{tasks}
\end{document}