如您所见,itemize 中的最后一项无缘无故地向右移动。如能得到任何帮助,我们将不胜感激!提前谢谢您。
逐项列举块:
\begin{itemize}
\item $Q^{E} = Q^{D} \cup \{q_0^{E}\}$
\item $F^{E} = F^{D}$
\item \[
\hspace{0mm}
\delta^{E}(q, \sigma) =
\begin{cases}
\delta^{D}(q, \sigma) & q \in Q^{D} \\
q_0^{D} & q = q_0^{E}, \sigma = a \\
q_0^{E} & q = q_0^{E}, \sigma = b
\end{cases}
\]
\end{itemize}
完整源代码:
% ***********************************************************
% ******************* PHYSICS HEADER ************************
% ***********************************************************
% Version 2
\documentclass[12pt]{article}
\usepackage{amsmath} % AMS Math Package
\usepackage{amsthm} % Theorem Formatting
\usepackage{amssymb} % Math symbols such as \mathbb
\usepackage{graphicx} % Allows for eps images
\usepackage[dvips,letterpaper,margin=1in,bottom=0.7in]{geometry}
\usepackage{tensor}
% Sets margins and page size
\renewcommand{\labelenumi}{(\alph{enumi})} % Use letters for enumerate
% \DeclareMathOperator{\Sample}{Sample}
\let\vaccent=\v % rename builtin command \v{} to \vaccent{}
\usepackage{enumerate}
\renewcommand{\v}[1]{\ensuremath{\mathbf{#1}}} % for vectors
\newcommand{\gv}[1]{\ensuremath{\mbox{\boldmath$ #1 $}}}
% for vectors of Greek letters
\newcommand{\uv}[1]{\ensuremath{\mathbf{\hat{#1}}}} % for unit vector
\newcommand{\abs}[1]{\left| #1 \right|} % for absolute value
\newcommand{\avg}[1]{\left< #1 \right>} % for average
\let\underdot=\d % rename builtin command \d{} to \underdot{}
\renewcommand{\d}[2]{\frac{d #1}{d #2}} % for derivatives
\newcommand{\dd}[2]{\frac{d^2 #1}{d #2^2}} % for double derivatives
\newcommand{\pd}[2]{\frac{\partial #1}{\partial #2}}
% for partial derivatives
\newcommand{\pdd}[2]{\frac{\partial^2 #1}{\partial #2^2}}
% for double partial derivatives
\newcommand{\pdc}[3]{\left( \frac{\partial #1}{\partial #2}
\right)_{#3}} % for thermodynamic partial derivatives
\newcommand{\ket}[1]{\left| #1 \right>} % for Dirac bras
\newcommand{\bra}[1]{\left< #1 \right|} % for Dirac kets
\newcommand{\braket}[2]{\left< #1 \vphantom{#2} \right|
\left. #2 \vphantom{#1} \right>} % for Dirac brackets
\newcommand{\matrixel}[3]{\left< #1 \vphantom{#2#3} \right|
#2 \left| #3 \vphantom{#1#2} \right>} % for Dirac matrix elements
\newcommand{\grad}[1]{\gv{\nabla} #1} % for gradient
\let\divsymb=\div % rename builtin command \div to \divsymb
\renewcommand{\div}[1]{\gv{\nabla} \cdot \v{#1}} % for divergence
\newcommand{\curl}[1]{\gv{\nabla} \times \v{#1}} % for curl
\let\baraccent=\= % rename builtin command \= to \baraccent
\renewcommand{\=}[1]{\stackrel{#1}{=}} % for putting numbers above =
\providecommand{\wave}[1]{\v{\tilde{#1}}}
\providecommand{\fr}{\frac}
\providecommand{\RR}{\mathbb{R}}
\providecommand{\NN}{\mathbb{N}}
\providecommand{\seq}{\subseteq}
\providecommand{\e}{\epsilon}
\newtheorem{prop}{Proposition}
\newtheorem{thm}{Theorem}[section]
\newtheorem{axiom}{Axiom}[section]
\newtheorem{p}{Problem}[section]
\usepackage{cancel}
\newtheorem*{lem}{Lemma}
\theoremstyle{definition}
\newtheorem*{dfn}{Definition}
\newenvironment{s}{%\small%
\begin{trivlist} \item \textbf{Solution}. }{%
\hspace*{\fill} $\blacksquare$\end{trivlist}}%
% ***********************************************************
% ********************** END HEADER *************************
% ***********************************************************
\begin{document}
{\noindent\Huge\bf \\[0.5\baselineskip] {\fontfamily{cmr}\selectfont Problem Set I} }\\[2\baselineskip] % Title
{ {\bf \fontfamily{cmr}\selectfont Computing Models}\\ {\textit{\fontfamily{cmr}\selectfont April 23, 2023}}}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ {\large \textsc{Alon Filler}\footnote{With $\Sigma$orer}} % Author name
\\[1.4\baselineskip]
\section{Automatas}
\emph{Given the automata $D = (Q^{D}, \{a,b\}, \delta^{D}, q_0^{D}, F^{D})$} \newline
\emph{Craft a new automata $E = (Q^{E}, \{a,b\}, \delta^{E}, q_0^{E}, F^{E})$} s.t: \newline
\begin{itemize}
\item $Q^{E} = Q^{D} \cup \{q_0^{E}\}$
\item $F^{E} = F^{D}$
\item \[
\hspace{0mm}
\delta^{E}(q, \sigma) =
\begin{cases}
\delta^{D}(q, \sigma) & q \in Q^{D} \\
q_0^{D} & q = q_0^{E}, \sigma = a \\
q_0^{E} & q = q_0^{E}, \sigma = b
\end{cases}
\]
\end{itemize}
\begin{p} Suppose that the incoming wave at $z = 0$ is linearly polarized in the x-direction, i.e.,
\[\v{E}(0,t) = E_0e^{-i\omega t}\uv{x} \tag{2}\]
Calculate $E_L$ and $E_R$.
\end{p}
\begin{s} We evaluate (1) at $z=0$ and set the resulting expression equal to (2), hereby solving for $E_L$ and $E_R$:
\begin{align*}
\v{E}(0,t)&=E_L(\uv{x}+i\uv{y})e^{-i\omega t)} +E_R(\uv{x}-i\uv{y})e^{-i\omega t}\tag{(1) with $z=0$}\\
&=[(E_L+E_R)\uv{x}+(E_L-E_R)i\uv{y})]e^{-i\omega t}=E_0e^{-i\omega t}\uv{x}
\end{align*}
\end{s}
\end{document}
答案1
使用内联数学公式代替显示数学公式将解决该问题(更改\[ ... \]
为\( ... \)
)。显示数学公式居中(在大多数文档类中)并从新行开始。
梅威瑟:
\documentclass{article}
\usepackage{mathtools}
\begin{document}
\begin{itemize}
\item $Q^{E} = Q^{D} \cup \{q_0^{E}\}$
\item $F^{E} = F^{D}$
\item \(
\delta^{E}(q, \sigma) =
\begin{cases}
\delta^{D}(q, \sigma) & q \in Q^{D} \\
q_0^{D} & q = q_0^{E}, \sigma = a \\
q_0^{E} & q = q_0^{E}, \sigma = b
\end{cases}
\)
\end{itemize}
\end{document}