如何配对旧标准(用于字母和数字)和Asana-Math(对于其余的数学)为了写出古老的数学?
答案1
类似这样的内容?示例文本取自这个问题。
\documentclass{article}
\pagestyle{empty}
\usepackage{amsmath}
\DeclareMathOperator\Res{Res}
\newcommand*\diff{\mathop{}\!\mathup{d}}
\usepackage{amsthm}
\newtheorem{theorem}{Theorem}
\usepackage{unicode-math}
\setmainfont{Old Standard}
\setmathfont{Asana Math}
\setmathfont{Old Standard Italic}[range=it]
\setmathfont{Old Standard}[range=up]
\setmathfont{Old Standard Bold Italic}[range=bfit]
\begin{document}
\begin{theorem}[Residue theorem]
Let $f$ be analytic in the region $G$ except for the isolated
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed
rectifiable curve in $G$ which does not pass through any of the
points $a_k$ and if $\gamma\approx 0$ in $G$, then
\[
\frac{1}{2\pi i} \int\limits_\gamma f\Bigl(x^{\mathbf{N}\in\mathbb{C}^{N\times 10}}\Bigr)
= \sum_{k=1}^m n(\gamma;a_k)\Res(f;a_k)\,.
\]
\end{theorem}
\begin{theorem}[Maximum modulus]
Let $G$ be a bounded open set in $\BbbC$ and suppose that $f$ is a
continuous function on $G^-$ which is analytic in $G$. Then
\[
\max\{\, |f(z)|:z\in G^- \,\} = \max\{\, |f(z)|:z\in \partial G \,\}\,.
\]
\end{theorem}
First some large operators both in text:
$\iiint\limits_{Q}f(x,y,z) \diff x \diff y \diff z$
and
$\prod_{\gamma\in\Gamma_{\bar{C}}}\partial(\tilde{X}_\gamma)$;\
and also on display
\[
\iiiint\limits_{Q}f(w,x,y,z) \diff w \diff x \diff y \diff z
\leq
\oint_{\partial Q} f'\Biggl(\max\Biggl\{
\frac{\Vert w\Vert}{\vert w^2+x^2\vert};
\frac{\Vert z\Vert}{\vert y^2+z^2\vert};
\frac{\Vert w\oplus z\Vert}{\vert x\oplus y\vert}
\Biggr\}\Biggr)\,.
\]
\end{document}