\documentclass{beamer}
\mode<presentation>
{
\usetheme{default}
\usecolortheme{default}
\usefonttheme{default}
\setbeamertemplate{navigation symbols}{}
\setbeamertemplate{caption}[numbered]
}
\usepackage[english]{babel}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{tikz, amsmath, physics}
\begin{document}
\tikzstyle{na} = [baseline=-.5ex]
\begin{frame}
If truncated to the second order, the KM expansion becomes the \alert{Fokker-Planck (\textbf{FP}) equation}
\begin{equation*}
\uncover<2->{\alt<3->{\pdv{p_{1|1}}{t}=-\pdv{}{x}\bigg(\tikz[baseline]{
\node[fill=magenta!20,anchor=base] (u1) {$a_1(x,t)$};}\;p_{1|1}\bigg)+\frac{1}{2}\pdv[2]{}{x}\bigg(\tikz[baseline]{
\node[fill=blue!20,anchor=base] (u2) {$a_2(x,t)$};}\;p_{1|1}\bigg)}{\pdv{p_{1|1}}{t}=-\pdv{}{x}\bigg(a_1(x,t)\;p_{1|1}\bigg)+\frac{1}{2}\pdv[2]{}{x}\bigg(a_2(x,t)\;p_{1|1}\bigg)}}
\end{equation*}
\uncover<4->{
\begin{itemize}[<+-| alert@+>]
\item[] {\textcolor{magenta}{drift} coefficient}
\tikz[na] \node[coordinate] (l1) {};
\end{itemize}
\begin{flushright}
\begin{itemize}[<+-| alert@+>]
\item[] {\alert{diffusion} coefficient}
\tikz[na] \node[coordinate] (l2) {};
\end{itemize}
\end{flushright}
\begin{tikzpicture}[overlay]
\path[->] (l1) edge [bend right] (u1);
\path[->] (l2) edge [bend right] (u2);
\end{tikzpicture}
}
\end{frame}
\end{document}
本质上,我想将箭头(l1)
和连接(l2)
到方程的节点(n1)
和(n2)
,但它无法识别它们,因为它们超出了范围。我试图修改代码,但情况却变得更糟了……
答案1
如果你想使用其他 tikzpictures 的节点,你应该使用
remember picture
选项您不得在未定义节点的覆盖层上绘制箭头。如果您使用
\alt
等\uncover
仅定义某些覆盖层上的节点,则不得在其他覆盖层上绘制箭头。无需多次重复使用和不使用方框的方程式,而是使用
overlay-beamer-styles
库来定义填充颜色应在哪些覆盖层上可见我建议你去看看图书馆
tikzmarks
。这样你就不用重新发明轮子了你加载的很多包都是不必要的。你应该清理你的前言,只加载演示所需的包。
\documentclass{beamer}
\mode<presentation>
{
% \usetheme{default}
% \usecolortheme{default}
% \usefonttheme{default}
\setbeamertemplate{navigation symbols}{}
\setbeamertemplate{caption}[numbered]
}
\usepackage[english]{babel}
%\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{tikz,
%amsmath,
physics}
\tikzset{na/.style={baseline=-.5ex}}
\usetikzlibrary{overlay-beamer-styles}
\begin{document}
\begin{frame}[t]
If truncated to the second order, the KM expansion becomes the \alert{Fokker-Planck (\textbf{FP}) equation}
\begin{equation*}
\uncover<2->{\pdv{p_{1|1}}{t}=-\pdv{}{x}\bigg(\tikz[baseline,remember picture]{
\node[fill=magenta!20,anchor=base,fill on=<3->] (u1) {$a_1(x,t)$};}\;p_{1|1}\bigg)+\frac{1}{2}\pdv[2]{}{x}\bigg(\tikz[baseline,remember picture]{
\node[fill=blue!20,anchor=base,fill on=<3->] (u2) {$a_2(x,t)$};}\;p_{1|1}\bigg)}
\end{equation*}
\uncover<4->{
\begin{itemize}[<+-| alert@+>]
\item[] {\textcolor{magenta}{drift} coefficient}
\tikz[na,remember picture] \node[coordinate] (l1) {};
\end{itemize}
% \begin{flushright}
\begin{itemize}[<+-| alert@+>]
\item[] {\alert{diffusion} coefficient}
\tikz[na,remember picture] \node[coordinate] (l2) {};
\end{itemize}
% \end{flushright}
\begin{onlyenv}<4->
\begin{tikzpicture}[overlay,remember picture]
\path[->] (l1) edge [bend right] (u1);
\path[->] (l2) edge [bend right] (u2);
\end{tikzpicture}
\end{onlyenv}
}
\end{frame}
\end{document}