如何创建薄空间?

如何创建薄空间?

我制作了一个表格(请参阅附件代码,主要来自这个答案) 在乳胶中,但我无法在“<”符号后创建一个薄空间。

如果我放置美元 ($$) 符号或使用 \hspace{},则代码无法编译。您能建议我如何解决这个问题吗?

\begin{table}[htbp]
\centering
 \caption{\textcolor{red}{Reconstruction efficiency ($\epsilon$), signal yield ($N_{S}$), signal significance ($\mathcal{S}$), upper limit on the signal yield ($N_{p\ell}^{UL}$) and branching fraction ($\mathcal{B}$) at 90\% confidence level for each mode}.}
 \label{tab:ul_data} 
        \begin{tabular}{c S[table-format=2.2] S[table-format=-2.2+-2.2] S[table-format=1.2] S[table-format=2.1] S[table-format=<1.2]}
            \hline \hline
            {{Decay mode}} & {{$\epsilon$ (\%)}}& {{$N_S$}} &
            {{$\mathcal{S}$($\sigma$)}}
            &{{$N_{p\ell}^{UL}$}} & {{$\mathcal{B} \times 10^{-7}$}} \\ [0.5ex] 
            \hline \hline
            $D^{0} \rightarrow pe^{-}$ & 10.16 & -6.4 \pm 8.5& {-} & 16.2 & < 5.1   \\  [1ex]
            %\hline
            $\bar{D}^{0} \rightarrow pe^{-}$ & 10.19 & -18.4 \pm 23 & {-} & 22.0 & < 6.9   \\  [1ex]
            %\hline
            $D^{0} \rightarrow \bar{p}e^{+}$ & 9.72 & -4.7 \pm 23 & {-} & 21.6 & < 7.1  \\  [1ex]
            %\hline
            $\bar{D}^{0} \rightarrow \bar{p}e^{+}$ & 9.62 & 7.1 \pm 9.0 & 0.60 & 23.0 & < 7.6   \\  [1ex]
            %\hline
            $D^{0} \rightarrow p\mu^{-}$ & 10.75 & 11.0 \pm 23 & 0.95 & 17.1 & <5.1  \\  [1ex] 
            %\hline
            $\bar{D}^{0} \rightarrow p\mu^{-}$ & 10.71 &-10.8 \pm 27 & {-} & 20.5 & <6.1   \\ [1ex] 
            %\hline
            $D^{0} \rightarrow \bar{p}\mu^{+}$ & 10.52 &-4.5 \pm 14 & {-} & 21.0 & <6.3 \\ [1ex] 
            %\hline
            $\bar{D}^{0} \rightarrow \bar{p}\mu^{+}$ & 10.45 & 16.7 \pm 8.8 & 1.56 & 21.4 & <6.5  \\ [1ex]  
            \hline \hline
    \end{tabular}
    \end{table}

答案1

我建议您将最后一列的列类型更改为,c并在该列的每个实例之前插入{}(“空数学原子”)<

我还会将表格类型从 改为 ,tabular因为array大部分内容都是数学。而且我会使用booktabs包的画线宏,而不是\hline\hline

在此处输入图片描述

\documentclass{article}
\usepackage{amsmath,siunitx,booktabs}
\newcolumntype{T}[1]{S[table-format=#1]}

\begin{document}
\begin{table}[htbp]
\caption{Reconstruction efficiency ($\epsilon$), signal yield ($N_{S}$), signal significance ($\mathcal{S}$), upper limit on the signal yield ($N_{p\ell}^{UL}$), and branching fraction ($\mathcal{B}$) at 90\% confidence level for each decay mode.}
\label{tab:ul_data} 
\[
\begin{array}{@{} l T{2.2} T{-2.1+-3.0} T{1.2} T{2.1} c @{}}
\toprule
\mbox{Decay mode} & {\epsilon\ (\%)} & {N_S} 
& {\mathcal{S}(\sigma)} & {N_{p\ell}^{\mathrm{UL}}} 
& {\mathcal{B} {\times} 10^{-7}} \\  
\midrule
   D^{0} \to pe^{-}           & 10.16 & -6.4 \pm  8.5& {\text{--}} & 16.2 & {}< 5.1  \\  
   \bar{D}^{0} \to pe^{-}     & 10.19 &-18.4 \pm 23  & {\text{--}} & 22.0 & {}< 6.9  \\ 
\addlinespace
   D^{0} \to \bar{p}e^{+}     &  9.72 & -4.7 \pm 23  & {\text{--}} & 21.6 & {}< 7.1  \\  
   \bar{D}^{0}\to\bar{p}e^{+} &  9.62 &  7.1 \pm  9.0& 0.60        & 23.0 & {}< 7.6  \\  
\addlinespace
   D^{0} \to p\mu^{-}         & 10.75 & 11.0 \pm 23  & 0.95        & 17.1 & {}< 5.1  \\   
   \bar{D}^{0} \to p\mu^{-}   & 10.71 &-10.8 \pm 27  & {\text{--}} & 20.5 & {}< 6.1  \\  
\addlinespace
   D^{0} \to \bar{p}\mu^{+}   & 10.52 & -4.5 \pm 14  & {\text{--}} & 21.0 & {}< 6.3  \\  
   \bar{D}^0\to\bar{p}\mu^{+} & 10.45 & 16.7 \pm 8.8 & 1.56        & 21.4 & {}< 6.5  \\
\bottomrule
\end{array}
\]
\end{table}
\end{document}

相关内容