我打算制作一个以 tikzpictures 为候选的 tableau。现在我想为输入(1 和 2)和候选(a、b、c)都编号——我试过使用,mcand
但它说它未定义。
第二个问题是如何将候选(a,b,c)的数字显示在单元格的右上角?
\begin{tableau}{c|c|c:c}
\inp{1. \ips{ \begin{tikzpicture}
\node (mora1) at (0,0.5) {$\mu$};
\node(add) at (0.5, 0.5) {+};
%\node (c) at (-0.2,0) {t};
\node (v1) at (0,0) {o};
\node (l) at (0,1.1) {$\texttt{H}$};
\node (q) at (1, 0.5) {$\mu$};
\node (ql) at (1, 1.1) {$\texttt{L}$};
\draw (v1) to (mora1) to (l);
\draw (q) to (ql);
\end{tikzpicture}}}
\const{*3$\mu$}
\const{OCP}
\const{Max\textsubscript{T}}
\const{Max\textsubscript{$\mu$}}
%\const{Ident\textsubscript{T-$\mu$}}
%\const{Ident\textsubscript{$\mu-\sigma$}}
\cand[]{\begin{tikzpicture}
\node (mora1) at (0,0.5) {$\mu$};
\node (v1) at (0,0) {o};
\node (l) at (0,1.1) {$\texttt{L}$};
\draw (v1) to (mora1);
\draw (mora1) to (l);
\end{tikzpicture}} \vio{} \vio{}\vio{*!} \vio{*}
\cand*[]{\begin{tikzpicture}
\node (a) at (0.25,-0.05) {o};
%\node (v1) at (-0.1,-0.05) {t};
\node (mora1) at (0,0.5) {$\mu$};
\node (mora2) at (0.5,0.5) {$\mu$};
\node (t) at (0.25,1.1) {$\texttt{H}$};
\draw (a) to (mora1) to (t);
\draw (a) to (mora2) to (t);
\end{tikzpicture}}
\vio{}\vio{} \vio{*!} \vio{}
\cand[\Optimal]{\begin{tikzpicture}
\node (a) at (0.25,-0.05) {o};
%\node (v1) at (-0.1,-0.05) {t};
\node (mora1) at (0,0.5) {$\mu$};
\node (mora2) at (0.5,0.5) {$\mu$};
\node (t) at (0,1.1) {$\texttt{H}$};
\node (t2) at (0.5,1.1) {$\texttt{L}$};
\draw (a) to (mora1) to (t);
\draw (a) to (mora2) to (t2);
\end{tikzpicture}}
\vio{}\vio{} \vio{} \vio{}
\inp {$2.$\ips{\begin{tikzpicture}
\node (mora1) at (0,0.5) {$\mu$};
\node(add) at (0.35, 0.5) {+};
%\node (c) at (-0.2,0.05) {b};
\node (v1) at (0,0) {a};
\node (l) at (0,1.1) {$\texttt{L}$};
\node (q) at (0.7, 0.5) {$\mu$};
\node (ql) at (0.7, 1.1) {$\texttt{L}$};
\draw (v1) to (mora1);
\draw (q) to (ql);
\draw (mora1) to (l);
\end{tikzpicture}}}
%\const{*(LH)\textsubscript{$\sigma$}}
%\const{*3$\mu$}
%\const{OCP}
%\const{Max\textsubscript{T}}
%\const{Max\textsubscript{$\mu$}}
%\const{Ident\textsubscript{T-$\mu$}}
%\const{Ident\textsubscript{$\mu-\sigma$}}
\cand[]{\begin{tikzpicture}
\node (mora1) at (0,0.5) {$\mu$};
%\node (c) at (-0.2,0.05) {b};
\node (v1) at (0,0) {a};
\node (l) at (0,1.1) {$\texttt{L}$};
\draw (v1) to (mora1);
\draw (mora1) to (l);
\end{tikzpicture}}
\vio{}\vio{}\vio{*}\vio{*!}
\cand[]{\begin{tikzpicture}
\node (mora1) at (0,0.5) {$\mu$};
%\node (mora2) at (0.5,0.5){$\mu_2$};
\node (mora3) at (0.5,0.5) {$\mu$};
%\node (c) at (-0.2,0.05) {b};
\node (v1) at (0.25,0) {a};
\node (t1) at (0,1.1){\texttt{L}};
\node (t2) at (0.5,1.1){\texttt{L}};
%\node (r) at (1,0) {r};
\draw (v1) to (mora1) to (t1);
%\draw (v1) to (mora2) to (t1);
\draw (v1) to (mora3) to (t2);
\end{tikzpicture}}
\vio{}\vio{*!}\vio{}\vio{}
\cand[\Optimal]{\begin{tikzpicture}
%&$$#\node (c) at (-0.2,0.05) {b};
\node (v1) at (0.25,0) {a};
\node (mora1) at (0,0.5) {$\mu$};
\node (mora2) at (0.5,0.5) {$\mu$};
\node (t) at (0.25,1.1) {$\texttt{L}$};
\draw (a) to (mora1) to (t);
\draw (a) to (mora2) to (t);
\end{tikzpicture}}
\vio{}\vio{}\vio{*}\vio{}
\end{tableau}