关于行号的两个问题

关于行号的两个问题

这是我的代码。

\documentclass[12pt]{article}
\usepackage{amsmath,amsthm,amssymb,mathrsfs,lineno}
\usepackage{tikz}
\newtheorem{theorem}{Theorem}
\linenumbers
\begin{document}
In the mathematical discipline of graph theory the Tutte-
Berge formula is a characterization of the size of a maximum matching in a 
graph. It is a generalization of Tutte theorem on perfect matchings, and is 
named after W. T. Tutte (who proved Tutte's theorem) and Claude Berge (who 
proved its generalization).

{\color{red}
\begin{theorem}
The size of a maximum matching of a graph $G=(V, E)$ equals
$$
\frac{1}{2} \min _{U \subseteq V}(|U|-\operatorname{odd}(G-U)+|V|),
$$
where odd $(H)$ counts how many of the connected components of the graph $H$ 
have an odd number of vertices.
\end{theorem}
}
\end{document}

在此处输入图片描述

我的第一个问题:

  • 为什么第 5 行和第 6 行之间存在明显的行号差距,而没有任何行号标记?

我的第二个问题:

  • 为什么行号 5 和 6 也标记为红色?我希望它们保持黑色。

虽然我可以调整的位置 {\color{red}},但是定理 1红色的变成了黑色。我希望它是红色的。

\begin{theorem}   
{\color{red} The size of a maximum matching of a graph $G=(V, E)$ equals
$$
\frac{1}{2} \min _{U \subseteq V}(|U|-\operatorname{odd}(G-U)+|V|),
$$
where odd $(H)$ counts how many of the connected components of the graph $H$ 
have an odd number of vertices.}
\end{theorem}

在此处输入图片描述

答案1

首先,$$...$$LaTeX 文档不支持它,而且lineno对此无能为力。

手册建议用 包裹显示屏linenomath*

\documentclass[12pt]{article}
\usepackage{amsmath,amsthm}
\usepackage{lineno}
\usepackage{xcolor}

\newtheorem{theorem}{Theorem}
\AtBeginEnvironment{theorem}{\color{red!80!green}}
\renewcommand{\linenumberfont}{\normalfont\tiny\sffamily\color{black}}

\linenumbers

\begin{document}

In the mathematical discipline of graph theory the Tutte-
Berge formula is a characterization of the size of a maximum matching in a 
graph. It is a generalization of Tutte theorem on perfect matchings, and is 
named after W. T. Tutte (who proved Tutte's theorem) and Claude Berge (who 
proved its generalization).

\begin{theorem}
The size of a maximum matching of a graph $G=(V, E)$ equals
\begin{linenomath*}
\[
\frac{1}{2} \min _{U \subseteq V}(|U|-\operatorname{odd}(G-U)+|V|),
\]
\end{linenomath*}
where $\operatorname{odd}(H)$ counts how many of the connected components of the graph $H$ 
have an odd number of vertices.
\end{theorem}

\end{document}

在此处输入图片描述

这将排版全部定理用红色表示。也许你想定义一个redtheorem环境,如果只有一些定理应该用红色表示

\newtheorem{theorem}{Theorem}% normal theorems
\newtheorem{redtheorem}[theorem]{Theorem}% red theorems
\AtBeginEnvironment{redtheorem}{\color{red!80!green}}

还请注意\operatorname{odd}必须总是被使用并且odd $(H)$会产生非常有争议的输出。

相关内容