我正在尝试弄清楚如何增加列宽,以便我的文本可以容纳,并且第 2 列中的方程式可以正确间隔(见图)。任何帮助都非常感谢。
\documentclass{article}
\usepackage[margins=.75]{geometry}
\usepackage{graphicx} % Required for inserting images
\usepackage[many]{tcolorbox}
\usepackage{enumitem}
\newcommand\df[5]{\(\displaystyle\int_{#1}^{#2}#3\, d#4=#5\)}
\newcommand\ex[1]{\textbf{Example #1:}}
\newcommand\indef[2]{\(\displaystyle\int{#1}\d{#2}=\)}
\newcommand\f{\(f\left(x\right)\)}
\begin{document}
\section{Introduction}
%----------------------PROPERTIES OF DEFINITE INTEGRALS----------------------
\section*{{Properties of Definite Integrals}
The following properties of the definite integral are a big part of calculus. \\
\begin{tcbitemize}[raster rows=2,raster height=22cm,raster every box/.style={colframe=red!50!black,colback=yellow!10!white}]
\tcbitem[blankest]
\begin{tcbitemize}[raster columns=1,raster rows=2,raster height=\tcbtextheight]
\tcbitem \textbf{\underline{Additive Property for Integrals}} \\
If \(f\) is integrable on the three closed intervals determined by \(a,b,\) and \(c\), then \\
\begin{center}
\df{a}{b}{f(x)}{x}{}\(\displaystyle\int_{a}^{c}f(x)\, dx+\int_{c}^{d}f(x)\, dx\)
\end{center}
\tcbitem \textbf{\underline{Definition of Two Special Definite Integrals}} \\
\begin{enumerate}[itemsep={.25in}]
\item If \(f\) is defined at \(x=a\), then, \df{a}{a}{f(x)}{x}{0}
\item If \(f\) is integrable on \([a,b]\), then,
\begin{description}
\item \df{b}{a}{f(x)}{x}{}\(-\displaystyle\int_{a}^{b}f(x)\, dx\)
\end{description}
\end{enumerate}
\end{tcbitemize}
\tcbitem If \(f\) and \(g\) are integrable on \([a,b]\) and \(k\) is constant, then the function of \(k\cdot f\) and \(f\pm g\) are integrable on the interval \([a,b]\). \\
\textbf{\underline{Constant Multiple Property for Integrals}}\\
\begin{description}
\item[1.] \df{a}{b}{kf(x)}{x}{}\(k\)\df{a}{b}{f(x)}{x}{}\\
\end{description}
\textbf{\underline{Additive Property for Integrals}}\\
\begin{description}
\item[2.] \df{a}{b}{\big[f(x)\pm g(x)\big]}{x}{}\df{a}{b}{f(x)}{x}{}\(\pm\)\df{a}{b}{g(x)}{x}{}
\end{description}
\end{tcbitemize}
\结束{文档}
答案1
乳胶的第一条规则:您不能忽略错误消息!
几何包没有
margins
选项,它被调用margin
并且需要长度,而不仅仅是数字。另一个语法错误是
\section*{{Properties of Definite Integrals}
。此外,您不应该
\\
在普通文本中滥用换行符。
避免 tcolorboxes 溢出的两种可能解决方案:
- 而不是
\underline
使用允许在下划线文本中换行的包之一,例如包lua-ul
。
% !TeX TS-program = lualatex
\documentclass{article}
\usepackage{geometry}
\usepackage{graphicx} % Required for inserting images
\usepackage[many]{tcolorbox}
\usepackage{enumitem}
\newcommand\df[5]{\(\displaystyle\int_{#1}^{#2}#3\, d#4=#5\)}
\newcommand\ex[1]{\textbf{Example #1:}}
\newcommand\indef[2]{\(\displaystyle\int{#1}\d{#2}=\)}
\newcommand\f{\(f\left(x\right)\)}
\usepackage{lua-ul}
\begin{document}
\section{Introduction}
%----------------------PROPERTIES OF DEFINITE INTEGRALS----------------------
\section*{Properties of Definite Integrals}
The following properties of the definite integral are a big part of calculus.
\begin{tcbitemize}[raster rows=2,raster height=22cm,raster every box/.style={colframe=red!50!black,colback=yellow!10!white}]
\tcbitem[blankest]
\begin{tcbitemize}[raster columns=1,raster rows=2,raster height=\tcbtextheight]
\tcbitem \textbf{\underLine{Additive Property for Integrals}}
If \(f\) is integrable on the three closed intervals determined by \(a,b,\) and \(c\), then
\begin{center}
\df{a}{b}{f(x)}{x}{}\(\displaystyle\int_{a}^{c}f(x)\, dx+\int_{c}^{d}f(x)\, dx\)
\end{center}
\tcbitem \textbf{\underLine{Definition of Two Special Definite Integrals}}
\begin{enumerate}[itemsep={.25in}]
\item If \(f\) is defined at \(x=a\), then, \df{a}{a}{f(x)}{x}{0}
\item If \(f\) is integrable on \([a,b]\), then,
\begin{description}
\item \df{b}{a}{f(x)}{x}{}\(-\displaystyle\int_{a}^{b}f(x)\, dx\)
\end{description}
\end{enumerate}
\end{tcbitemize}
\tcbitem If \(f\) and \(g\) are integrable on \([a,b]\) and \(k\) is constant, then the function of \(k\cdot f\) and \(f\pm g\) are integrable on the interval \([a,b]\).
\textbf{\underLine{Constant Multiple Property for Integrals}}\\
\begin{description}
\item[1.] \df{a}{b}{kf(x)}{x}{}\(k\)\df{a}{b}{f(x)}{x}{}
\end{description}
\textbf{\underline{Additive Property for Integrals}}
\begin{description}
\item[2.] \df{a}{b}{\big[f(x)\pm g(x)\big]}{x}{}\df{a}{b}{f(x)}{x}{}\(\pm\)\df{a}{b}{g(x)}{x}{}
\end{description}
\end{tcbitemize}
\end{document}
- 边距较小时:
% !TeX TS-program = lualatex
\documentclass{article}
\usepackage[margin=0.75in]{geometry}
\usepackage{graphicx} % Required for inserting images
\usepackage[many]{tcolorbox}
\usepackage{enumitem}
\newcommand\df[5]{\(\displaystyle\int_{#1}^{#2}#3\, d#4=#5\)}
\newcommand\ex[1]{\textbf{Example #1:}}
\newcommand\indef[2]{\(\displaystyle\int{#1}\d{#2}=\)}
\newcommand\f{\(f\left(x\right)\)}
\usepackage{lua-ul}
\begin{document}
\section{Introduction}
%----------------------PROPERTIES OF DEFINITE INTEGRALS----------------------
\section*{Properties of Definite Integrals}
The following properties of the definite integral are a big part of calculus.
\begin{tcbitemize}[raster rows=2,raster height=22cm,raster every box/.style={colframe=red!50!black,colback=yellow!10!white}]
\tcbitem[blankest]
\begin{tcbitemize}[raster columns=1,raster rows=2,raster height=\tcbtextheight]
\tcbitem \textbf{\underLine{Additive Property for Integrals}}
If \(f\) is integrable on the three closed intervals determined by \(a,b,\) and \(c\), then
\begin{center}
\df{a}{b}{f(x)}{x}{}\(\displaystyle\int_{a}^{c}f(x)\, dx+\int_{c}^{d}f(x)\, dx\)
\end{center}
\tcbitem \textbf{\underLine{Definition of Two Special Definite Integrals}}
\begin{enumerate}[itemsep={.25in}]
\item If \(f\) is defined at \(x=a\), then, \df{a}{a}{f(x)}{x}{0}
\item If \(f\) is integrable on \([a,b]\), then,
\begin{description}
\item \df{b}{a}{f(x)}{x}{}\(-\displaystyle\int_{a}^{b}f(x)\, dx\)
\end{description}
\end{enumerate}
\end{tcbitemize}
\tcbitem If \(f\) and \(g\) are integrable on \([a,b]\) and \(k\) is constant, then the function of \(k\cdot f\) and \(f\pm g\) are integrable on the interval \([a,b]\).
\textbf{\underLine{Constant Multiple Property for Integrals}}\\
\begin{description}
\item[1.] \df{a}{b}{kf(x)}{x}{}\(k\)\df{a}{b}{f(x)}{x}{}
\end{description}
\textbf{\underline{Additive Property for Integrals}}
\begin{description}
\item[2.] \df{a}{b}{\big[f(x)\pm g(x)\big]}{x}{}\df{a}{b}{f(x)}{x}{}\(\pm\)\df{a}{b}{g(x)}{x}{}
\end{description}
\end{tcbitemize}
\end{document}