如何使用矩阵使顶部和底部空间相同

如何使用矩阵使顶部和底部空间相同

我尝试过:

\documentclass{article}
\usepackage{amsmath}%amssymb,
\usepackage{bm}
\begin{document}

Outputs to machine learning models are also often represented as vectors. For instance, consider an object recognition model that takes an image as input and emits a set of numbers indicating the probabilities that the image contains a  dog, human, or cat, respectively.  The output of such a model is a three element vector $\vec{y} = \begin{bmatrix}y_{0}\\y_{1}\\y_{2}\\\dfrac{1}{2}\end{bmatrix}$, where the number $y_{0}$ denotes the probability that the image contains a dog, $y_{1}$ denotes the~probability that the image contains a human, and $y_{2}$ denotes the probability that the image contains a cat. Figure~\ref{fig:vec_out} shows some possible input images and corresponding output vectors.
\begin{align*}
p\left( x \right)
&= \overbrace{ \pi_{1}}^{0.33}\mathcal{N}\left( \vec{x}; \, \overbrace{ \vec{\mu}_{1} }^{\begin{bmatrix}
152\\55
\end{bmatrix}} \overbrace{ \bm{\Sigma}_{1}}^{ \begin{bmatrix}
20 &0\\0 &28
\end{bmatrix} } \right)
+ \overbrace{ \pi_{2} }^{0.33} \mathcal{N}\left(\vec{x}; \, \overbrace{ \vec{\mu}_{2}  }^{  \begin{bmatrix}
175\\70
\end{bmatrix}  }, \overbrace{ \bm{\Sigma}_{2}}^{ \begin{bmatrix}
35 & 39\\39 & 51
\end{bmatrix} } \right)\\
&+ \overbrace{ \pi_{3} }^{0.33} \mathcal{N}\left(\vec{x}; \, \overbrace{ \vec{\mu}_{3} }^{  \begin{bmatrix}
135\\40
\end{bmatrix} }, \overbrace{ \bm{\Sigma}_{3}}^{ \begin{bmatrix}
10 & 0\\0 & 10
\end{bmatrix} } \right)
\end{align*}

\end{document}

产生的输出为:

在此处输入图片描述

如何才能使矩阵顶部和底部的空间相等?请指教

此外,如果有人能解释为什么会发生这种情况会更有帮助。

答案1

我不确定这是否是您想要的,但您可以用 将每个部分的内容括起来\vcenter{\hbox{$ ... $}}

在此处输入图片描述

\documentclass{article}
\usepackage{amsmath}%amssymb,
\usepackage{bm}
\begin{document}

\begin{align*}
p\left( x \right)
&= \overbrace{ \pi_{1}}^{0.33}\mathcal{N}\left(\vcenter{\hbox{$ \vec{x}; \, \overbrace{ \vec{\mu}_{1} }^{\begin{bmatrix}
152\\55
\end{bmatrix}} \overbrace{ \bm{\Sigma}_{1}}^{ \begin{bmatrix}
20 &0\\0 &28
\end{bmatrix} } $}}\right)
+ \overbrace{ \pi_{2} }^{0.33} \mathcal{N}\left(\vcenter{\hbox{$ \vec{x}; \, \overbrace{ \vec{\mu}_{2}  }^{  \begin{bmatrix}
175\\70
\end{bmatrix}  }, \overbrace{ \bm{\Sigma}_{2}}^{ \begin{bmatrix}
35 & 39\\39 & 51
\end{bmatrix} } $}}\right)\\
&+ \overbrace{ \pi_{3} }^{0.33} \mathcal{N}\left(\vcenter{\hbox{$ \vec{x}; \, \overbrace{ \vec{\mu}_{3} }^{  \begin{bmatrix}
135\\40
\end{bmatrix} }, \overbrace{ \bm{\Sigma}_{3}}^{ \begin{bmatrix}
10 & 0\\0 & 10
\end{bmatrix} } $}}\right)
\end{align*}

\end{document}

答案2

你收到了一个很好的答案,但我强烈建议你这样做\overbrace

\documentclass{article}
\usepackage{amsmath}
\usepackage{bm}

\begin{document}

Outputs to machine learning models are also often represented as vectors. 
For instance, consider an object recognition model that takes an image as 
input and emits a set of numbers indicating the probabilities that the 
image contains a  dog, human, or cat, respectively.  The output of such 
a model is a three element vector
$\vec{y} = [\begin{matrix}y_{0} & y_{1} & y_{2} & \frac{1}{2}\end{matrix}]^T$, 
where the number $y_{0}$ denotes the probability that the image contains a dog, 
$y_{1}$ denotes the~probability that the image contains a human, and $y_{2}$ 
denotes the probability that the image contains a cat. Figure~\ref{fig:vec_out} 
shows some possible input images and corresponding output vectors.
\begin{gather*}
p(x) = \pi_{1} \mathcal{N} ( \vec{x}; \, \vec{\mu}_{1}, \bm{\Sigma}_{1})
     + \pi_{2} \mathcal{N} ( \vec{x}; \, \vec{\mu}_{2}, \bm{\Sigma}_{2})
     + \pi_{3} \mathcal{N} ( \vec{x}; \, \vec{\mu}_{3}, \bm{\Sigma}_{3})
\\[1ex]
\begin{aligned}
\pi_1&=0.33 & \pi_2&=0.33 & \pi_3&=0.33
\\
\vec{\mu}_{1}&=\begin{bmatrix} 152 \\ 55 \end{bmatrix}, &
\vec{\mu}_{2}&=\begin{bmatrix} 175 \\ 70 \end{bmatrix}, &
\vec{\mu}_{3}&=\begin{bmatrix} 135 \\ 40 \end{bmatrix}
\\
\bm{\Sigma}_{1}&=\begin{bmatrix} 20 &  0 \\  0 & 28 \end{bmatrix}, &
\bm{\Sigma}_{2}&=\begin{bmatrix} 35 & 39 \\ 39 & 51 \end{bmatrix}, &
\bm{\Sigma}_{3}&=\begin{bmatrix} 10 &  0 \\  0 & 10 \end{bmatrix}
\end{aligned}
\end{gather*}

\end{document}

请注意,列向量写为行向量的转置,这样可以避免行之间的间隙。

在此处输入图片描述

有了替代对齐方式

\documentclass{article}
\usepackage{amsmath}
\usepackage{bm}

\begin{document}

Outputs to machine learning models are also often represented as vectors. 
For instance, consider an object recognition model that takes an image as 
input and emits a set of numbers indicating the probabilities that the 
image contains a  dog, human, or cat, respectively.  The output of such 
a model is a three element vector
$\vec{y} = [\begin{matrix}y_{0} & y_{1} & y_{2} & \frac{1}{2}\end{matrix}]^T$, 
where the number $y_{0}$ denotes the probability that the image contains a dog, 
$y_{1}$ denotes the~probability that the image contains a human, and $y_{2}$ 
denotes the probability that the image contains a cat. Figure~\ref{fig:vec_out} 
shows some possible input images and corresponding output vectors.
\begin{alignat*}{3}
p(x) = \pi_{1} &\mathcal{N} ( \vec{x}; \, \vec{\mu}_{1}, \bm{\Sigma}_{1})
     &{}+ \pi_{2} &\mathcal{N} ( \vec{x}; \, \vec{\mu}_{2}, \bm{\Sigma}_{2})
     &{}+ \pi_{3} &\mathcal{N} ( \vec{x}; \, \vec{\mu}_{3}, \bm{\Sigma}_{3})
\\[1ex]
\pi_1&=0.33 & \pi_2&=0.33 & \pi_3&=0.33
\\
\vec{\mu}_{1}&=\begin{bmatrix} 152 \\ 55 \end{bmatrix}, &
\vec{\mu}_{2}&=\begin{bmatrix} 175 \\ 70 \end{bmatrix}, &
\vec{\mu}_{3}&=\begin{bmatrix} 135 \\ 40 \end{bmatrix}
\\
\bm{\Sigma}_{1}&=\begin{bmatrix} 20 &  0 \\  0 & 28 \end{bmatrix}, &
\bm{\Sigma}_{2}&=\begin{bmatrix} 35 & 39 \\ 39 & 51 \end{bmatrix}, &
\bm{\Sigma}_{3}&=\begin{bmatrix} 10 &  0 \\  0 & 10 \end{bmatrix}
\end{alignat*}

\end{document}

在此处输入图片描述

为了完整起见,下面介绍如何完成建议的任务。我留下了大的内联列向量,以说明为什么它真的很糟糕。

比较输出结果,我毫不怀疑。

\documentclass{article}
\usepackage{amsmath}
\usepackage{bm}
\usepackage{delarray}

\begin{document}

Outputs to machine learning models are also often represented as vectors. 
For instance, consider an object recognition model that takes an image as 
input and emits a set of numbers indicating the probabilities that the 
image contains a  dog, human, or cat, respectively.  The output of such 
a model is a three element vector
$\vec{y} = \begin{bmatrix}y_{0} \\ y_{1} \\ y_{2} \\ \dfrac{1}{2}\end{bmatrix}$, 
where the number $y_{0}$ denotes the probability that the image contains a dog, 
$y_{1}$ denotes the~probability that the image contains a human, and $y_{2}$ 
denotes the probability that the image contains a cat. Figure~\ref{fig:vec_out} 
shows some possible input images and corresponding output vectors.
\begin{equation*}
\begin{aligned}
p(x)
&= \overbrace{ \pi_{1}}^{0.33}\mathcal{N}
\begin{array}[b]({c})
\vec{x}; \, \overbrace{ \vec{\mu}_{1} }^{\begin{bmatrix}
152\\55
\end{bmatrix}} \overbrace{ \bm{\Sigma}_{1}}^{ \begin{bmatrix}
20 &0\\0 &28
\end{bmatrix} }
\end{array}
+ \overbrace{ \pi_{2} }^{0.33} \mathcal{N}
\begin{array}[b]({c})
\vec{x}; \, \overbrace{ \vec{\mu}_{2}  }^{  \begin{bmatrix}
175\\70
\end{bmatrix}  }, \overbrace{ \bm{\Sigma}_{2}}^{ \begin{bmatrix}
35 & 39\\39 & 51
\end{bmatrix} }
\end{array}\\
&+ \overbrace{ \pi_{3} }^{0.33} \mathcal{N}
\begin{array}[b]({c})\vec{x}; \, \overbrace{ \vec{\mu}_{3} }^{  \begin{bmatrix}
135\\40
\end{bmatrix} }, \overbrace{ \bm{\Sigma}_{3}}^{ \begin{bmatrix}
10 & 0\\0 & 10
\end{bmatrix} }
\end{array}
\end{aligned}
\end{equation*}

\end{document}

在此处输入图片描述

答案3

\left( ... \right)用替换 的三个实例就足够了\bigl( ... \bigr)。请注意,由于较大\overbrace构造的第二个参数是解释性的而不是定义性的,因此它们不需要放在(现在不再很高的)括号中。

\vec{y}哦,除非您想引起人们对环境之前段落中的定义的关注align*,否则我会将其写为行向量而不是列向量。

在此处输入图片描述

\documentclass{article}
\usepackage{amsmath,amssymb,bm}
\begin{document}

Outputs to machine learning models are also often represented as vectors. For instance, consider an object recognition model that takes an image as input and emits a set of numbers indicating the probabilities that the image contains a  dog, human, or cat, respectively.  The output of such a model is a three element vector
$\vec{y} = \begin{bmatrix} y_{0} & y_{1} & y_{2} \end{bmatrix}'$, 
where the number $y_{0}$ denotes the probability that the image contains a dog, $y_{1}$ denotes the~probability that the image contains a human, and $y_{2}$ denotes the probability that the image contains a cat. Figure~\ref{fig:vec_out} shows some possible input images and corresponding output vectors.
\begin{align*}
p(x)
&=\overbrace{ \pi_{1}\mathstrut}^{0.33}\mathcal{N}
  \bigl( \vec{x};  
  \overbrace{ \vec{\mu}_{1} }^{
      \begin{bmatrix} 152\\55 \end{bmatrix}} ,
  \overbrace{ \bm{\Sigma}_{1}}^{ 
      \begin{bmatrix} 20 &0\\0 &28 \end{bmatrix} } 
  \bigr)
 +\overbrace{ \pi_{2}\mathstrut}^{0.33} \mathcal{N}
  \bigl(\vec{x};  
  \overbrace{ \vec{\mu}_{2}  }^{  
      \begin{bmatrix} 175\\70 \end{bmatrix}  }, 
  \overbrace{ \bm{\Sigma}_{2}}^{ 
      \begin{bmatrix} 35 & 39\\39 & 51 \end{bmatrix} } 
  \bigr) 
  \\[2\jot] % insert a bit more vertical whitespace
&\quad+\overbrace{ \pi_{3}\mathstrut}^{0.33} \mathcal{N}
 \bigl(\vec{x};  
 \overbrace{ \vec{\mu}_{3} }^{  
     \begin{bmatrix} 135\\40 \end{bmatrix} }, 
 \overbrace{ \bm{\Sigma}_{3}}^{ 
     \begin{bmatrix} 10 & 0\\0 & 10 \end{bmatrix} } 
 \bigr)
\end{align*}

\end{document}

相关内容