\ 几天前,我发现了这些笔记,我对这些笔记的写作风格印象深刻。我也想把我的(数学)笔记做成这样。
但是我是 latex(overleaf)的初学者,所以我不太了解如何像这样转换我的文档。不过,我使用这个网站几天后,我明白了,如何在中心写章节,在顶部写页码等等。
我在序言中的代码是:
\documentclass[a4paper,twoside,english]{article}
%\usepackage[T1]{fontenc}
%\usepackage{tgtermes}
%\usepakage{times}
\usepackage[paperheight=600pt,paperwidth=515pt ,bottom=-7mm,right=22.4mm]{geometry}
\setlength{\headsep}{5mm}
%\setlength{\hoffset}{0pt}
\setlength{\oddsidemargin}{1pt}
%\setlength{\marginparwidth}{0mm}
%\setlength{\marginparsep}{0mm}
\setlength{\evensidemargin}{1pt}
\setlength{\footskip}{1.6mm}
\setlength{\voffset}{-8mm}
\setlength{\headheight}{5mm}
\setlength{\textwidth}{370pt}
\setlength{\textheight}{530pt}
%\usepackage{xcolor}
\usepackage{titlesec}
%\titleformat{\subsection}[hang]{\bfseries}{}{1em}{}
%\setcounter{secnumdepth}{1}
%\usepackage{sectsty}
%\allsectionsfont{\centering}
%\titlelabel{\thetitle . \enspace}
\renewcommand\thesection{\arabic{section}.}
\titleformat{\section}[block]{\Large\centering}{\arabic{section}.}{1em}{}
%\sectionfont{\centering}
\usepackage{fancyhdr}
\usepackage{calc}
%\usepackage{showframe}
%\usepackage{fourier}
\usepackage{graphicx} % Required for inserting images
\usepackage{blindtext}
\usepackage{amsfonts,amsmath,amssymb,amsthm}
%\renewcommand\thesubsection{\thesection.\arabic{subsection}}
问题:但我唯一遇到的问题,经过大量搜索,我还是无法弄清楚,这些字体样式的名称是什么,以及如何在我的全部的文档?
此外,我也尝试设置类似的边距。但我无法仅通过查看 pdf 找出边距。\ 是否可以从 pdf 中找出类似的边距?如果可以,那么如何做?
任何帮助都将不胜感激。谢谢。
编辑:
这里我要说的是整个文档的字体样式。虽然乍一看这个 pdf 中的字体对我来说似乎是默认的。但是当我将它与我写的 pdf(默认字体)进行比较时,那就是
我发现,文档中的字体不是默认的。
编辑2
最小工作示例是
\documentclass[a4paper,twoside,english]{article}
\usepackage{graphicx} % Required for inserting images
\usepackage[paperheight=600pt,paperwidth=515pt ,bottom=-7mm,right=22.4mm]{geometry}
\setlength{\headsep}{5mm}
\setlength{\oddsidemargin}{1pt}
\setlength{\evensidemargin}{1pt}
\setlength{\footskip}{1.6mm}
\setlength{\voffset}{-8mm}
\setlength{\headheight}{5mm}
\setlength{\textwidth}{370pt}
\setlength{\textheight}{530pt}
\usepackage{times}
\usepackage{titlesec}
\renewcommand\thesection{\arabic{section}.}
\titleformat{\section}[block]{\Large\centering\scshape}{\arabic{section}.}{1em}{}
\usepackage{fancyhdr}
\usepackage{blindtext}
\usepackage{amsfonts,amsmath,amssymb,amsthm}
\title{My doc}
\begin{document}
\section{Hello}
\blindtext
\end{document}
编辑3
在 Mirco 的帮助和指导下,我稍微修改了 Mirco 代码,得到了我真正想要的。
此外,现在我知道了 pdf 的尺寸是 11.33 × 14.67 英寸(纵向)。我该如何在文档中发布这个尺寸?
\documentclass{amsart}
\usepackage[a4paper,margin=3.75cm, top=1.74cm,bottom=1.5cm,left=3.74cm,right=3.74cm]{geometry}
\usepackage[english]{babel}
\hyphenation{pre-image} % avoid "preim-age"
\usepackage{cleveref} % for "clever" cross-references
\usepackage{fancyhdr}
\pagestyle{fancy}
\fancyhead[C]{REAL ANALYSIS}
\fancyhead[LE,RO]{\thepage}
\fancyfoot{}
\renewcommand{\headrulewidth}{0pt}
\usepackage{blindtext}
%\usepackage{amsthm} % is loaded automatically by 'amsart' class
\theoremstyle{theorem} % italic lettering
\newtheorem{theorem}{Theorem}[section]
\newtheorem{proposition}[theorem]{Proposition} % all theorem-like environments to share the same counter
\theoremstyle{definition} % upright lettering
\newtheorem{definition}[theorem]{Definition}
\newtheorem{example}[theorem]{Example}
\theoremstyle{remark}
\newtheorem*{remark}{Remark} % 'remark' env.: not numbered
\usepackage[scr=euler]{mathalpha} % for "Euler script"
\usepackage{enumitem} % for \newlist and \setlist macros
\newlist{thmenumerate}{enumerate}{1} % 'enumerate'-like list
\setlist[thmenumerate]{label=\upshape(\alph*)} % alphabetical numbering
\crefname{thmenumeratei}{part}{parts} % label for parts of enumerated list
% -------------
\begin{document}
\section{Real Analysis}
\addtocounter{theorem}{2} % just for this example
\noindent
(earlier stuff)
\begin{definition}
Let $(X,\mathscr{M})$ be a measurable space. A function $f\colon X\to[-\infty,\infty]$ is said to be $\mathscr{M}$-measurable (or simply \emph{measurable} when the context is clear) if the preimage
$f^{-1}((a,\infty])=\{x\in X\colon f(x)>a\}$ is measurable for every real number~$a$.
\end{definition}
\begin{example} \phantom{.}\par % force an immediate line break
\begin{thmenumerate}
\item Constant functions are measurable.
\item Given a subset $A$ of $X$, the characteristic function $\chi_{A}$ is a measurable function if and only if $A$ is measurable.
\item The continuous functions $f\colon \mathbb{R}^d\to \mathbb{R}$ are \dots
\item The monotone functions $f\colon \mathbb{R}\to \mathbb{R}$ are \dots
\end{thmenumerate}
\end{example}
\begin{proposition}
Let $(X,\mathscr{M})$ be a measurable space and let $f\colon X\to[-\infty,\infty]$ be a function. Then the following statements are equivalent:
\begin{thmenumerate}
\item For every real number $a$, the set \dots
\item For every real number $a$, the set \dots
\item For every real number $a$, the set \dots
\item For every real number $a$, the set \dots
\end{thmenumerate}
\end{proposition}
\begin{proposition}
Let $(X,\mathscr{M})$ be a measurable space. If $f$ and $g$ are measurable functions defined on $X$, then the sets
\begin{thmenumerate}
\item \label{part:greaterthan} $\{x\in X\colon f(x)>g(x)\}$,
\item \label{part:greaterthanorequal} $\{x\in X\colon f(x)\ge g(x)\}$, and
\item \label{part:equal} $\{x\in X\colon f(x)=g(x)\}$
\end{thmenumerate}
are all measurable.
\end{proposition}
\begin{proof}
If $r_1,r_2,\dots$ is an enumeration of the rational numbers, then
\[
\{x\in X : f(x)>g(x)\} =
\bigcup_{n=1}^{\infty} \bigl[x\in X: f(x)>r_n\} \cap
\{x\in X: g(x)<r_n\}\bigr]
\]
is measurable since it is a countable union of measurable sets, establishing \cref{part:greaterthan}.
\Cref{part:greaterthanorequal} follows by noting that
\[
\{x\in X: f(x)\ge g(x)\}=\{x\in X: g(x)>f(x)\}^c,
\]
is measurable by \ref{part:greaterthan}.
Finally, to show \cref{part:equal} observe that
\[
\{x\in X:f(x)=g(x)\}=\{x\in X: f(x)\ge g(x)\} \cap
\{x\in X: g(x)\ge f(x)\}
\]
is measurable by \ref{part:greaterthanorequal}.
\end{proof}
\begin{remark}
We now want to show that \dots
\end{remark}
\noindent
(more stuff)
\section{Measure}
\begin{definition}
By a \emph{measure} $\mu$ on a measurable space $(X,\mathscr{M})$, we mean an extended real valued nonnegative set function $\mu\colon\mathscr{M}\to[0, \infty]$ for which $\mu(\emptyset)=0$ and which is \emph{countably additive} in the sense that for any countable disjoint collection $\{E_n\}_{n=1}^{\infty}$ of measurable sets,
\[
\mu\biggl(\,\bigcup_{n=1}^{\infty} E_n \biggr) =
\sum_{n=1}^{\infty} \mu(E_n)\,.
\]
By a \emph{measure space} $(X,\mathscr{M},\mu)$ we mean a measurable space $(X,\mathscr{M})$ together with a meausure~$\mu$ defined on~$\mathscr{M}$.
\end{definition}
\blindtext
\blindtext[4]
\section{Blind}
\blindtext[4]
\section{Help}
\blindtext[4]
\end{document}
答案1
在选择文档的设计元素方面,我宁愿采用一个合适的文档类,该类已经定义了许多结构元素,例如相关文档的节标题格式。对于您的特定文档,一个主要候选者似乎是文档类。amsart
文档amsart
类还会自动加载amsmath
、amssymb
和amsthm
包。
并且,充分利用 LaTeX 包的功能,例如geometry
(设置页面和边距参数)、enumitem
(例如,用于定制枚举类列表)和cleveref
(用于交叉引用目的)。
\documentclass{amsart}
\usepackage[a4paper,margin=3.75cm]{geometry}
\usepackage[english]{babel}
\hyphenation{pre-image} % avoid "preim-age"
\usepackage{cleveref} % for "clever" cross-references
%\usepackage{amsthm} % is loaded automatically by 'amsart' class
\theoremstyle{theorem} % italic lettering
\newtheorem{theorem}{Theorem}[section]
\newtheorem{proposition}[theorem]{Proposition} % all theorem-like environments to share the same counter
\theoremstyle{definition} % upright lettering
\newtheorem{definition}[theorem]{Definition}
\newtheorem{example}[theorem]{Example}
\theoremstyle{remark}
\newtheorem*{remark}{Remark} % 'remark' env.: not numbered
\usepackage[scr=euler]{mathalpha} % for "Euler script"
\usepackage{enumitem} % for \newlist and \setlist macros
\newlist{thmenumerate}{enumerate}{1} % 'enumerate'-like list
\setlist[thmenumerate]{label=\upshape(\alph*)} % alphabetical numbering
\crefname{thmenumeratei}{part}{parts} % label for parts of enumerated list
% -------------
\begin{document}
\section{Real Analysis}
\addtocounter{theorem}{2} % just for this example
\noindent
(earlier stuff)
\begin{definition}
Let $(X,\mathscr{M})$ be a measurable space. A function $f\colon X\to[-\infty,\infty]$ is said to be $\mathscr{M}$-measurable (or simply \emph{measurable} when the context is clear) if the preimage
$f^{-1}((a,\infty])=\{x\in X\colon f(x)>a\}$ is measurable for every real number~$a$.
\end{definition}
\begin{example} \phantom{.}\par % force an immediate line break
\begin{thmenumerate}
\item Constant functions are measurable.
\item Given a subset $A$ of $X$, the characteristic function $\chi_{A}$ is a measurable function if and only if $A$ is measurable.
\item The continuous functions $f\colon \mathbb{R}^d\to \mathbb{R}$ are \dots
\item The monotone functions $f\colon \mathbb{R}\to \mathbb{R}$ are \dots
\end{thmenumerate}
\end{example}
\begin{proposition}
Let $(X,\mathscr{M})$ be a measurable space and let $f\colon X\to[-\infty,\infty]$ be a function. Then the following statements are equivalent:
\begin{thmenumerate}
\item For every real number $a$, the set \dots
\item For every real number $a$, the set \dots
\item For every real number $a$, the set \dots
\item For every real number $a$, the set \dots
\end{thmenumerate}
\end{proposition}
\begin{proposition}
Let $(X,\mathscr{M})$ be a measurable space. If $f$ and $g$ are measurable functions defined on $X$, then the sets
\begin{thmenumerate}
\item \label{part:greaterthan} $\{x\in X\colon f(x)>g(x)\}$,
\item \label{part:greaterthanorequal} $\{x\in X\colon f(x)\ge g(x)\}$, and
\item \label{part:equal} $\{x\in X\colon f(x)=g(x)\}$
\end{thmenumerate}
are all measurable.
\end{proposition}
\begin{proof}
If $r_1,r_2,\dots$ is an enumeration of the rational numbers, then
\[
\{x\in X : f(x)>g(x)\} =
\bigcup_{n=1}^{\infty} \bigl[x\in X: f(x)>r_n\} \cap
\{x\in X: g(x)<r_n\}\bigr]
\]
is measurable since it is a countable union of measurable sets, establishing \cref{part:greaterthan}.
\Cref{part:greaterthanorequal} follows by noting that
\[
\{x\in X: f(x)\ge g(x)\}=\{x\in X: g(x)>f(x)\}^c,
\]
is measurable by \ref{part:greaterthan}.
Finally, to show \cref{part:equal} observe that
\[
\{x\in X:f(x)=g(x)\}=\{x\in X: f(x)\ge g(x)\} \cap
\{x\in X: g(x)\ge f(x)\}
\]
is measurable by \ref{part:greaterthanorequal}.
\end{proof}
\begin{remark}
We now want to show that \dots
\end{remark}
\noindent
(more stuff)
\section{Measure}
\begin{definition}
By a \emph{measure} $\mu$ on a measurable space $(X,\mathscr{M})$, we mean an extended real valued nonnegative set function $\mu\colon\mathscr{M}\to[0, \infty]$ for which $\mu(\emptyset)=0$ and which is \emph{countably additive} in the sense that for any countable disjoint collection $\{E_n\}_{n=1}^{\infty}$ of measurable sets,
\[
\mu\biggl(\,\bigcup_{n=1}^{\infty} E_n \biggr) =
\sum_{n=1}^{\infty} \mu(E_n)\,.
\]
By a \emph{measure space} $(X,\mathscr{M},\mu)$ we mean a measurable space $(X,\mathscr{M})$ together with a meausure~$\mu$ defined on~$\mathscr{M}$.
\end{definition}
\end{document}