当 \belowdisplayskip = \abovedisplayskip 时,为什么等式上方的间距比下方的间距大?

当 \belowdisplayskip = \abovedisplayskip 时,为什么等式上方的间距比下方的间距大?

\abovedisplayskip和都\belowdisplayskip设置为默认值10pt plus 2pt minus 5pt,但我看到显示的方程式未在段落之间居中。这是什么原因造成的?我该如何让它们居中?

我也很好奇为什么间距要这样设计。段落之间不垂直居中方程式实际上是传统做法还是出于美观考虑?

在此处输入图片描述

\documentclass{article}
\usepackage{geometry}
\geometry{left=2cm,right=2cm}
\usepackage{lipsum}
\begin{document}

\lipsum[1]

\begin{equation}
    \mathrm{d}{I} = -AI\mathop{}\!\mathrm{d}x
\end{equation}

\lipsum[2]

\begin{equation}
    \ln \frac{A_\mathrm{s}}{A_\mathrm{d}} = \int_L\!\!A\mathop{}\!\mathrm{d}x
\end{equation}

\lipsum[2]

\begin{equation}
    Z = \sqrt{\rho K}
\end{equation}

\lipsum[3]

\end{document}

答案1

如果你添加\showoutput并查看(例如)最后一个以 Z= 开头的等式,你会看到

...\glue(\parskip) 0.0
...\glue(\baselineskip) 10.05556
...\hbox(0.0+0.0)x500.484, glue set 485.484fil
....\hbox(0.0+0.0)x15.0
....\penalty 10000
....\glue(\parfillskip) 0.0 plus 1.0fil
....\glue(\rightskip) 0.0
...\penalty 10000
...\glue(\abovedisplayshortskip) 0.0 plus 3.0
...\glue(\baselineskip) 2.21736
...\hbox(9.78264+2.61745)x272.86868, shifted 227.61531
....\hbox(9.78264+2.61745)x45.25339, display
.....\OML/cmm/m/it/10 Z

这显示了等式上方是一个单行段落,其中一行仅包含段落缩进和最后的 parfillskip:

....\hbox(0.0+0.0)x15.0
....\penalty 10000
....\glue(\parfillskip) 0.0 plus 1.0fil
....\glue(\rightskip) 0.0

因此它是一个全白的段落,看起来像垂直空间,但它不会拉伸,也不会被放在页面的顶部,导致分页符处的等式开始得太低。

不要在显示的方程式上方留下空白行。删除它,你会得到

...\penalty 10000
...\glue(\abovedisplayskip) 10.0 plus 2.0 minus 5.0
...\glue(\baselineskip) 0.27292
...\hbox(9.78264+2.61745)x272.86868, shifted 227.61531
....\hbox(9.78264+2.61745)x45.25339, display
.....\OML/cmm/m/it/10 Z

没有跳过任何段落,也没有虚假段落。

在此处输入图片描述

\documentclass{article}
\usepackage{geometry}
\geometry{left=2cm,right=2cm}
\showoutput
\usepackage{lipsum}
\begin{document}

\lipsum[1]
\begin{equation}
    \mathrm{d}{I} = -AI\mathop{}\!\mathrm{d}x
\end{equation}

\lipsum[2]
\begin{equation}
    \ln \frac{A_\mathrm{s}}{A_\mathrm{d}} = \int_L\!\!A\mathop{}\!\mathrm{d}x
\end{equation}

\lipsum[2]
\begin{equation}
    Z = \sqrt{\rho K}
\end{equation}

\lipsum[3]

\end{document}

相关内容