我遇到了环境问题breqn
。以下代码不会自动换行,尽管有很多可行的断点,例如+
。
\documentclass{article}
\usepackage{amsmath}
\usepackage{breqn}
\begin{document}
\begin{dmath}
(m \delta m ((i k_{y} \beta^{(p)} \zeta_{P} \rho_{c}^{(n)} p_{0}^2)/(2 g_{P} \sigma p_{0}^6+8 m Q_{0}^3 \beta^{(n)} \sigma p_{0}^4+g_{P} m Q_{0} \beta^{(p)} p_{0}^2)+(4 i Q_{0} (k_{y} Q_{0}^2 \zeta_{P} {\beta^{(p)}}^2+k_{y} (4 m \beta^{(n)} Q_{0}^3+g_{P} p_{0}^2) (g_{P} \lambda_{Q}-Q_{0} \beta^{(p)} \lambda_{2})) \rho_{c}^{(n)} (\rho_{c}^{(p)} \sigma p_{0}^4-m \rho +m Q_{0} \beta^{(p)} \rho_{c}^{(p)}+\rho_{c}^{(p)}) p_{0}^2)/((2 g_{P} \sigma p_{0}^6+8 m Q_{0}^3 \beta^{(n)} \sigma p_{0}^4+g_{P} m Q_{0} \beta^{(p)} p_{0}^2) (g_{P}^2 m \rho_{c}^{(p)} p_{0}^4+4 m Q_{0}^2 \beta^{(p)} (Q_{0} \rho -g_{P} p_{0}^2 \rho_{c}^{(p)})-4 Q_{0}^3 \beta^{(p)} \rho_{c}^{(p)} (\sigma p_{0}^4+1)))+(i k_{y} (4 m \beta^{(n)} Q_{0}^3+g_{P} p_{0}^2) (2 Q_{0} \lambda_{Q}-p_{0}^2 \lambda_{2}) \rho_{c}^{(n)})/(Q_{0} (2 g_{P} \sigma p_{0}^6+8 m Q_{0}^3 \beta^{(n)} \sigma p_{0}^4+g_{P} m Q_{0} \beta^{(p)} p_{0}^2))))/(4 \rho_{c}^{(n)})
\end{dmath}
\end{document}
任何能够自动打破这种类型方程的替代方法都值得赞赏。
答案1
你可以直接使用原始的 TeX 换行符而根本不使用任何包(breqn 可以避免在里面换行()
)
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{center}\renewcommand\baselinestretch{1.7}\selectfont
$\displaystyle
(m \delta m ((i k_{y} \beta^{(p)} \zeta_{P} \rho_{c}^{(n)}
p_{0}^2)/(2 g_{P} \sigma p_{0}^6+8 m Q_{0}^3 \beta^{(n)} \sigma
p_{0}^4+g_{P} m Q_{0} \beta^{(p)} p_{0}^2)+(4 i Q_{0} (k_{y} Q_{0}^2
\zeta_{P} {\beta^{(p)}}^2+k_{y} (4 m \beta^{(n)} Q_{0}^3+g_{P}
p_{0}^2) (g_{P} \lambda_{Q}-Q_{0} \beta^{(p)} \lambda_{2}))
\rho_{c}^{(n)} (\rho_{c}^{(p)} \sigma p_{0}^4-m \rho +m Q_{0}
\beta^{(p)} \rho_{c}^{(p)}+\rho_{c}^{(p)}) p_{0}^2)/((2 g_{P} \sigma
p_{0}^6+8 m Q_{0}^3 \beta^{(n)} \sigma p_{0}^4+g_{P} m Q_{0}
\beta^{(p)} p_{0}^2) (g_{P}^2 m \rho_{c}^{(p)} p_{0}^4+4 m Q_{0}^2
\beta^{(p)} (Q_{0} \rho -g_{P} p_{0}^2 \rho_{c}^{(p)})-4 Q_{0}^3
\beta^{(p)} \rho_{c}^{(p)} (\sigma p_{0}^4+1)))+(i k_{y} (4 m
\beta^{(n)} Q_{0}^3+g_{P} p_{0}^2) (2 Q_{0} \lambda_{Q}-p_{0}^2
\lambda_{2}) \rho_{c}^{(n)})/(Q_{0} (2 g_{P} \sigma p_{0}^6+8 m
Q_{0}^3 \beta^{(n)} \sigma p_{0}^4+g_{P} m Q_{0} \beta^{(p)}
p_{0}^2))))/(4 \rho_{c}^{(n)})$
\end{center}
\end{document}