答案1
您可以获得与积分符号对齐的第一个超几何:
\documentclass{article}
\usepackage{amsmath}
\usepackage{showframe}
\ExplSyntaxOn
% https://tex.stackexchange.com/a/125531/4427
\NewDocumentCommand{\pFq}{O{}mmmmm}
{
% #2 = left subscript, #3 = right subscript
% #4 = top, #5 = bottom, #6 = right
\group_begin:
\keys_set:nn { hypergeometric } { #1 }
\hypergeometric_print:nnnnn { #2 } { #3 } { #4 } { #5 } { #6 }
\group_end:
}
\NewDocumentCommand{\hypergeometricsetup}{m}
{
\keys_set:nn { hypergeometric } { #1 }
}
\tl_new:N \l_hypergeometric_divider_tl
\tl_new:N \l_hypergeometric_left_tl
\tl_new:N \l_hypergeometric_right_tl
\keys_define:nn { hypergeometric }
{
symbol .tl_set:N = \l_hypergeometric_symbol_tl,
symbol .initial:n = F,
separator .tl_set:N = \l_hypergeometric_separator_tl,
separator .initial:n = {},
skip .tl_set:N = \l_hypergeometric_skip_tl,
skip .initial:n = 8,
divider .choice:,
divider/semicolon .code:n = \tl_set:Nn \l_hypergeometric_divider_tl { \;; },
divider/bar .code:n = \tl_set:Nn \l_hypergeometric_divider_tl { \;\middle|\; },
divider .initial:n = semicolon,
fences .choice:,
fences/brack .code:n =
\tl_set:Nn \l_hypergeometric_left_tl {[}
\tl_set:Nn \l_hypergeometric_right_tl {]},
fences/parens .code:n =
\tl_set:Nn \l_hypergeometric_left_tl {(}
\tl_set:Nn \l_hypergeometric_right_tl {)},
fences .initial:n = brack,
}
\cs_new_protected:Nn \hypergeometric_print:nnnnn
{
% the main symbol
{} \sb {#1} \l_hypergeometric_symbol_tl \sb { #2 }
% the parameters
\left\l_hypergeometric_left_tl
\genfrac .. % no delimiters
{0pt} % no line
{} % default style
{ \__hypergeometric_process:n { #3 } } % numerator
{ \__hypergeometric_process:n { #4 } } % denominator
\l_hypergeometric_divider_tl
#5
\right\l_hypergeometric_right_tl
}
\cs_new_protected:Nn \__hypergeometric_process:n
{
\clist_use:nn { #1 }
{
{\l_hypergeometric_separator_tl}
\mspace { \l_hypergeometric_skip_tl mu }
}
}
\ExplSyntaxOff
\hypergeometricsetup{
fences=brack,
divider=semicolon,
separator={,},
}
\newcommand{\diff}{\mathop{}\!d}
\newcommand{\dd}{\Delta}
\newcommand{\p}{\phi}
\begin{document}
\begin{equation}
\begin{split}
&\!
\int_0^1 y^{\frac{\dd-\ell}{2}-\dd_\p+s-1} (1-y)^{2\dd_\p-h+\ell-1}\\
& \pFq{2}{1}{s,s+j}{2s+j}{1-y}
\pFq{2}{1}{-h+\frac{\dd+\ell}{2}+\dd_\p,-h+\frac{\dd+\ell}{2}+\dd_\p}{\dd-h+1}{y}
\diff y\,.
\end{split}
\end{equation}
\end{document}
如果您希望数字与底行对齐,请使用选项tbtags
:amsmath
您\usepackage[tbtags]{amsmath}
将获得
或者,如果您只想将此放置用于此显示而不是通常用于split
,则可以使用aligned
:
\begin{equation}
\begin{aligned}[b]
&\!
\int_0^1 y^{\frac{\dd-\ell}{2}-\dd_\p+s-1} (1-y)^{2\dd_\p-h+\ell-1}\\
& \pFq{2}{1}{s,s+j}{2s+j}{1-y}
\pFq{2}{1}{-h+\frac{\dd+\ell}{2}+\dd_\p,-h+\frac{\dd+\ell}{2}+\dd_\p}{\dd-h+1}{y}
\diff y\,.
\end{aligned}
\end{equation}
值得一提的另一种可能性是给复杂的公式命名:
If we set
\[
H(y)=
\pFq{2}{1}{s,s+j}{2s+j}{1-y}
\pFq{2}{1}{-h+\frac{\dd+\ell}{2}+\dd_\p,-h+\frac{\dd+\ell}{2}+\dd_\p}{\dd-h+1}{y},
\]
then we can consider
\begin{equation}
\int_0^1 y^{\frac{\dd-\ell}{2}-\dd_\p+s-1} (1-y)^{2\dd_\p-h+\ell-1} H(y)\diff y,
\end{equation}
填写适当的措辞。
答案2
将第一个超几何项放在第一行怎么样?
请注意,我已将\frac{\dd-\ell}{2}
和分别重写\frac{\dd+\ell}{2}
为(\dd-\ell)/2
和(\dd+\ell)/2
。
\documentclass{article}
\usepackage{amsmath} % for 'multline*' env.
% Some macro definitions:
\providecommand\dd{\Delta}
\providecommand\p{\phi}
\providecommand\pFq[5]{{}_{#1}F_{#2} \Bigl[
\begin{matrix} #3 \\ #4\end{matrix} \,;\, #5 \Bigr]}
\providecommand\diff{\,\mathrm{d}}
\providecommand\zzz{-h+(\dd+\ell)/2+\dd_\p}
\begin{document}
\begin{multline*}
\int_0^1 y^{(\dd-\ell)/2-\dd_\p+s-1}\,
(1-y)^{2\dd_\p-h+\ell-1}\,
\pFq{2}{1}{s,\ s+j}{2s+j}{1-y} \\[\jot]
\pFq{2}{1}{\zzz,\ \zzz}{\dd-h+1}{y}
\diff y\,.
\end{multline*}
\end{document}