我有一长串的不平等现象:
\begin{align*}
d_{DTW}(w'_\epsilon,v)
&\leq \sum_{(i',j') \in P'} c(h_{\constantsAndvInfiniteEpsilons}(w_{i'}),v_{j'}) + \sum_{(i',j') \in P''} c(w_{i'},v_{j'})\\
&\leq \sum_{(i',j') \in P} c(h_{\constantsAndvInfiniteEpsilons}(w_{i'}),w_{i'}) + \sum_{(i',j') \in P'} c(w_{i'},v_{j'}) + \sum_{(i',j') \in P''} c(w_{i'},v_{j'})\\
&\leq \sum_{(i',j') \in P} c(h_{\constantsAndvInfiniteEpsilons}(w_{i'}),w_{i'}) + \sum_{(i',j') \in P} c(w_{i'},v_{j'})\\
&\leq \sum_{(i',j') \in P} c(h_{\constantsAndvInfiniteEpsilons}(w_{i'}),w_{i'}) + d_{DTW}(w_\epsilon,v)\\
&\leq \epsilon * \sum_{(i',j') \in P} c(h(\kappa_{i'}),\kappa_{i'}) + d_{DTW}(w_\epsilon,v)\\
&\leq \delta' * \sum_{(i',j') \in P} c(h(\kappa_{i'}),\kappa_{i'}) + d_{DTW}(w_\epsilon,v)\\
&\leq \frac{b-b'}{\sum_{(i',j') \in P} c(h(\kappa_{i'}),\kappa_{i'})} * \sum_{(i',j') \in P} c(h(\kappa_{i'}),\kappa_{i'}) + d_{DTW}(w_\epsilon,v)\\
&\leq b-b' + d_{DTW}(w_\epsilon,v)\\
&\leq b
\end{align*}
我希望对此进行交错解释,以解释不平等现象的每一步。
我可以将哪种方法与 align 结合来实现这一点?
答案1
该amsmath
包还提供了环境align*
,它提供了一个名为 的宏\intertext
,可以完成您要完成的工作。该mathtools
包是amsmath
包的超集,它提供了一个名为 的宏,特别适合简短的交错解释。以下屏幕截图说明了和\shortintertext
的输出。\intertext
\shortintertext
\documentclass{article}
\usepackage{mathtools,lipsum}
\providecommand{\constantsAndvInfiniteEpsilons}{ZZZ} % ?
\begin{document}
\begin{align*}
d_{\mathrm{DTW}}(w'_\epsilon,v)
&\leq \smashoperator{\sum_{(i',j') \in P'}}
c(h_{\constantsAndvInfiniteEpsilons}(w_{i'}),v_{j'})
+ \smashoperator{\sum_{(i',j') \in P''}} c(w_{i'},v_{j'})\\
\intertext{\lipsum[1][1-3]}
&\leq \smashoperator{\sum_{(i',j') \in P}}
c(h_{\constantsAndvInfiniteEpsilons}(w_{i'}),w_{i'})
+ \smashoperator{\sum_{(i',j') \in P'}} c(w_{i'},v_{j'})
+ \smashoperator{\sum_{(i',j') \in P''}} c(w_{i'},v_{j'})\\
\intertext{\lipsum[1][1-3]}
&\leq \smashoperator{\sum_{(i',j') \in P}}
c(h_{\constantsAndvInfiniteEpsilons}(w_{i'}),w_{i'})
+ \smashoperator{\sum_{(i',j') \in P}} c(w_{i'},v_{j'})\\
\intertext{\lipsum[1][1-3]}
&\leq \smashoperator{\sum_{(i',j') \in P}}
c(h_{\constantsAndvInfiniteEpsilons}(w_{i'}),w_{i'})
+ d_{\mathrm{DTW}}(w_\epsilon,v)\\
\intertext{\lipsum[1][1-3]}
&\leq \epsilon * \smashoperator{\sum_{(i',j') \in P}}
c(h(\kappa_{i'}),\kappa_{i'})
+ d_{\mathrm{DTW}}(w_\epsilon,v)\\
\shortintertext{\lipsum[1][1]}
&\leq \delta' * \smashoperator{\sum_{(i',j') \in P}}
c(h(\kappa_{i'}),\kappa_{i'})
+ d_{\mathrm{DTW}}(w_\epsilon,v)\\
\shortintertext{\lipsum[1][1]}
&\leq \frac{b-b'}{\sum_{(i',j') \in P}
c(h(\kappa_{i'}),\kappa_{i'})} *
\smashoperator{\sum_{(i',j') \in P}}
c(h(\kappa_{i'}),\kappa_{i'})
+ d_{\mathrm{DTW}}(w_\epsilon,v)\\
\shortintertext{\lipsum[1][1]}
&\leq b-b' + d_{\mathrm{DTW}}(w_\epsilon,v)\\
\shortintertext{\lipsum[1][1]}
&\leq b\,.
\end{align*}
\end{document}