我在多个网站上看到过关于将 beamer 文件导出为文章 pdf 的转换,例如https://gitlab.com/benoitldr/beamerarticle-teacher。
我遇到的问题是,大约 3 年前,我创建了很多 beamer 幻灯片,但现在我想将它们完全转换为 latex 文章类或 latex 书籍类,以更简单者为准。
下面是我以前做过的一个示例代码。正如你所看到的,当时我认为做很多事情\uncover
是个好主意,但现在,试图把它们全部改掉真是太麻烦了。
有任何想法吗?
\documentclass[12pt]{beamer}
\usepackage{etex}
\usepackage{verbatim}
\usepackage{pstricks-add}
\usepackage{amsmath}
\usetheme{CambridgeUS}
\begin{document}
\beamersetuncovermixins{\opaqueness<1>{25}}{\opaqueness<2->{15}}
\setbeamercovered{invisible}
\setbeamerfont{alerted text}{series=\bfseries}
\title{Primes \& Prime Factorisation}
\subtitle{Factors \& Multiples}
\author[Eugene]{Eugene}
\institute[SS]{\normalsize{Singapore School}}
\date{\today}
\section*{Singapore School}
\subsection*{Introduction}
\begin{frame}[allowframebreaks]
\titlepage
\end{frame}
\subsection*{TOC}
\begin{frame}
\frametitle{Table Of Contents}
\tableofcontents[pausesubsections]
\end{frame}
\section{Recall}
\subsection{Factors}
\begin{frame}
\begin{center}\Large{Recall}\end{center} \vspace{0.2 cm}
\begin{center}\Large{\red{Factors}}\end{center}
\end{frame}
\begin{frame}
\frametitle{Factors}
\begin{block}{Recall: Factors}
\uncover<2->{\alert{Factors} are numbers that can divide the original number.\\
\uncover<3->{\footnotesize Tip: Smaller or equal to original number}}
\end{block}
\uncover<3->{\begin{exampleblock}{Example}}
\uncover<4->{Factors of 16:} \uncover<5->{1}\uncover<6->{, 2}\uncover<7->{, 4}\uncover<8->{, 8}\uncover<9->{, 16}
\end{exampleblock}
\end{frame}
\subsection{Multiples}
\begin{frame}
\begin{center}\Large{Recall}\end{center} \vspace{0.2 cm}
\begin{center}\Large{\red{Multiples}}\end{center}
\end{frame}
\begin{frame}
\frametitle{Multiples}
\begin{block}{Recall: Multiples}
\uncover<2->{\alert{Multiples} are numbers that can be divided by the original number.\\
\uncover<3->{\footnotesize Tip: Bigger or equal to original number}}
\end{block}
\uncover<3->{\begin{exampleblock}{Example}}
\uncover<4->{Multiples of 16:} \uncover<5->{16}\uncover<6->{, 32}\uncover<7->{, 48}\uncover<8->{, 64, $\dots$}
\end{exampleblock}
\end{frame}
\section{Concept}
\subsection{Primes}
\begin{frame}
\begin{center}\Large{Concept}\end{center} \vspace{0.2 cm}
\begin{center}\Large{\red{Primes}}\end{center}
\end{frame}
\begin{frame}
\frametitle{Primes}
\begin{block}{Concept: Primes}
\uncover<2->{\alert{Primes} are whole numbers with only 2 factors, 1 and itself.\\
\uncover<3->{\footnotesize Tip: Must be greater than 1}}
\end{block}
\uncover<3->{\begin{exampleblock}{Examples}}
\uncover<4->{Examples: 2}\uncover<5->{, 3}\uncover<6->{, 5}\uncover<7->{, 7}\uncover<8->{, 11}\uncover<9->{, 13, $\dots$}\\
\end{exampleblock}
\end{frame}
\subsection{Composite Numbers}
\begin{frame}
\begin{center}\Large{Concept}\end{center} \vspace{0.2 cm}
\begin{center}\Large{\red{Composite Numbers}}\end{center}
\end{frame}
\begin{frame}
\frametitle{Composite Numbers}
\begin{block}{Concept: Composite Numbers}
\uncover<2->{\alert{Composite numbers} are whole numbers with more than 2 factors.}
\end{block}
\uncover<3->{\begin{exampleblock}{Examples}}
\uncover<4->{Examples: 4}\uncover<5->{, 6}\uncover<6->{, 8}\uncover<7->{, 9}\uncover<8->{, 10}\uncover<9->{, 12, $\dots$}\\
\end{exampleblock}
\end{frame}
\subsection*{Questions}
\begin{frame}
\begin{center}\Large{Concept}\end{center} \vspace{0.2 cm}
\begin{center}\Large{\red{Questions}}\end{center}
\end{frame}
\begin{frame}
\frametitle{Questions}
\begin{exampleblock}{Concept: Questions}
Classify the following numbers into primes or composite numbers:
\begin{enumerate}
\item 20
\item 29
\item 1
\item 37
\item 0
\end{enumerate}
\end{exampleblock}
\end{frame}
\subsection{Index Notation \& Prime Factorisation}
\begin{frame}
\begin{center}\Large{Concept}\end{center} \vspace{0.2 cm}
\begin{center}\Large{\red{Index Notation \& Prime Factorisation}}\end{center}
\end{frame}
\begin{frame}
\frametitle{Index Notation}
\begin{block}{Concept: Index Notation}
\uncover<2->{\alert{Index notation} means expressing the product of terms using powers.}
\end{block}
\uncover<3->{\begin{exampleblock}{Example}}
\uncover<4->{Write the index notation of $7\times7\times7$:}\uncover<5->{ $7^3$}\\
\uncover<6->{Write the index notation of $2\times2\times2\times2\times2$:}\uncover<7->{$= 2^5$}\\
\end{exampleblock}
\end{frame}
\begin{frame}
\frametitle{Prime Factorisation}
\begin{block}{Concept: Prime Factorisation}
\uncover<2->{\alert{Prime factorisation} means expressing a composite number as a product of its prime factors.}
\end{block}
\end{frame}
\begin{frame}
\frametitle{Prime Factorisation}
\begin{exampleblock}{Example 1: Factor Tree }
\uncover<2->{Find the prime factorisation of 210.}\\
\uncover<3->{
\begin{align*}
210&=2\times 3\times 5\times 7
\end{align*}}
\end{exampleblock}
\end{frame}
\begin{frame}
\frametitle{Prime Factorisation}
\begin{exampleblock}{Example 2: Factor Tree }
\uncover<2->{Find the prime factorisation of 140, leaving your answer in \textbf{index notation}.}\\
\uncover<3->{
\begin{align*}
140&=2^2\times 5\times 7
\end{align*}}
\end{exampleblock}
\end{frame}
\section*{Conclusion}
\subsection*{Closure}
\begin{frame}
\frametitle{Closure}
\tableofcontents[pausesubsections]
\end{frame}
\end{document}